improving the security of MACs via randomized message preprocessing

Yevgeniy Dodis (New York University)
Krzysztof Pietrzak (CWI Amsterdam)

March 26, 2007

Symmetric Authentication: Message Authentication Codes

M

M^{\prime}

Symmetric Authentication: Message Authentication Codes

- Kermit and Peggy share a secret key K.
- Kermit sends an authentication tag $\phi=\operatorname{MAC}(K, M)$ together with message M.
- Peggy accepts M^{\prime} iff $\phi^{\prime}=\operatorname{MAC}\left(K, M^{\prime}\right)$.

Symmetric Authentication: Message Authentication Codes

$$
\begin{gathered}
K \\
\phi^{\prime} \stackrel{?}{=} M A C\left(K, M^{\prime}\right)
\end{gathered}
$$

- Kermit and Peggy share a secret key K.
- Kermit sends an authentication tag $\phi=\operatorname{MAC}(K, M)$ together with message M.
- Peggy accepts M^{\prime} iff $\phi^{\prime}=\operatorname{MAC}\left(K, M^{\prime}\right)$.
- Security: It should be hard for Beeker (who does not know K) to come up with a pair $\left(M^{\prime}, \phi^{\prime}\right)$ where
- $\phi^{\prime}=\operatorname{MAC}\left(K, M^{\prime}\right)$
- Kermit did not already send ($\left.M^{\prime}, \phi\right)$

Asymmetric Authentication: Digital Signatures

M

Asymmetric Authentication: Digital Signatures

- Kermit generates a secret/public-key par Sk, Pk and send Pk to Peggy over an authentic chanell.
- Kermit sends Signature $\phi=\operatorname{Sign}(S k, M)$ together with message M.
- Peggy accepts M^{\prime} iff $\operatorname{Verify}\left(P k, \phi^{\prime}, M^{\prime}\right)=$ accept.

Asymmetric Authentication: Digital Signatures

- Kermit generates a secret/public-key par $S k, P k$ and send $P k$ to Peggy over an authentic chanell.
- Kermit sends Signature $\phi=\operatorname{Sign}(S k, M)$ together with message M.
- Peggy accepts M^{\prime} iff $\operatorname{Verify}\left(P k, \phi^{\prime}, M^{\prime}\right)=$ accept.
- Security: It should be hard for Beeker (who does not know $S k$) to come up with a pair ($M^{\prime}, \phi^{\prime}$) where
- Verify $\left(P k, \phi^{\prime}, M^{\prime}\right)=$ accept
- Kermit did not already send ($\left.M^{\prime}, \phi\right)$

Hash then Sign/MAC/Encrypt

hash \& Sign hash \& MAC

- CRHF: $\operatorname{Pr}\left[A \rightarrow X, X^{\prime}: H(X)=H\left(X^{\prime}\right)\right]=$ small

Hash then Sign/MAC/Encrypt

hash \& Sign hash \& MAC
hash \& Sign

- CRHF: $\operatorname{Pr}\left[A \rightarrow X, X^{\prime}: H(X)=H\left(X^{\prime}\right)\right]=$ small
- UOWHF: $\max _{X} \operatorname{Pr}_{R}\left[A(R) \rightarrow X^{\prime}: H_{R}(X)=H_{R}\left(X^{\prime}\right)\right]=$ small

Hash then Sign/MAC/Encrypt

hash \& Sign

hash \& MAC

hash \& Sign

hash \& encrypt

- CRHF: $\operatorname{Pr}\left[A \rightarrow X, X^{\prime}: H(X)=H\left(X^{\prime}\right)\right]=$ small
- UOWHF: $\max _{X} \operatorname{Pr}_{R}\left[A(R) \rightarrow X^{\prime}: H_{R}(X)=H_{R}\left(X^{\prime}\right)\right]=$ small
- ϵ-XUH: $\max _{X, X^{\prime}} \operatorname{Pr}_{K_{\text {hash }}}\left[H_{K_{\text {hash }}}(X)=H_{K_{\text {hash }}}\left(X^{\prime}\right)\right] \leq \epsilon$

Hash then Encrypt

Hash then Encrypt

To analyze the security we replace Enc with a uniformly random permutation $\mathcal{E}:\{0,1\}^{k} \rightarrow\{0,1\}^{k}$.

Sample K and \mathcal{E} at random

MAC queries

Forgery queries

Beeker wins if for some $j, \phi_{j}^{\prime \prime}=\phi_{j}^{\prime}$.

Theorem (security of hash then encrypt)

If H is ϵ-universal then

$$
\operatorname{Pr}[\text { Beeker wins }] \leq \epsilon \cdot q_{\text {mac }}^{2}+\epsilon \cdot q_{\text {forge }}
$$

where $q_{\text {mac }} / q_{\text {forge }}$ is the number of MAC/forgery queries.

Theorem (security of hash then encrypt)

If H is ϵ-universal then

$$
\operatorname{Pr}[\text { Beeker wins }] \leq \epsilon \cdot q_{\text {mac }}^{2}+\epsilon \cdot q_{\text {forge }}
$$

where $q_{\text {mac }} / q_{\text {forge }}$ is the number of MAC/forgery queries.
Proof.

$$
\begin{aligned}
\operatorname{Pr}[\text { Beeker wins }] & \leq \operatorname{Pr}[\text { collision }]+\operatorname{Pr}[\text { forgery } \mid \text { no collision }] \\
& \leq \epsilon \cdot q_{m a c}^{2}+\epsilon \cdot q_{\text {forge }}
\end{aligned}
$$

Theorem (security of hash then encrypt)

If H is ϵ-universal then

$$
\operatorname{Pr}[\text { Beeker wins }] \leq \epsilon \cdot q_{\text {mac }}^{2}+\epsilon \cdot q_{\text {forge }}
$$

where $q_{\text {mac }} / q_{\text {forge }}$ is the number of $M A C /$ forgery queries.

Corollary

$q=q_{\text {mac }}+q_{\text {forge }}$
If H is $O\left(1 / 2^{k}\right)$ universal, then the security is $O\left(q^{2} / 2^{k}\right)$. If H is $O\left(|M| / 2^{k}\right)$ universal, then the security is $O\left(|M| q^{2} / 2^{k}\right)$.

Theorem (security of hash then encrypt)

If H is ϵ-universal then

$$
\operatorname{Pr}[\text { Beeker wins }] \leq \epsilon \cdot q_{\text {mac }}^{2}+\epsilon \cdot q_{\text {forge }}
$$

where $q_{\text {mac }} / q_{\text {forge }}$ is the number of $M A C /$ forgery queries.

Corollary

$q=q_{\text {mac }}+q_{\text {forge }}$
If H is $O\left(1 / 2^{k}\right)$ universal, then the security is $O\left(q^{2} / 2^{k}\right)$. If H is $O\left(|M| / 2^{k}\right)$ universal, then the security is $O\left(|M| q^{2} / 2^{k}\right)$.

Can we get $O\left(q^{2} / 2^{k}\right)$ security using $O\left(|M| / 2^{k}\right)$ universal hashing?

Theorem (security of hash then encrypt)

If H is ϵ-universal then

$$
\operatorname{Pr}[\text { Beeker wins }] \leq \epsilon \cdot q_{\text {mac }}^{2}+\epsilon \cdot q_{\text {forge }}
$$

where $q_{\text {mac }} / q_{\text {forge }}$ is the number of $M A C /$ forgery queries.

Corollary

$q=q_{\text {mac }}+q_{\text {forge }}$
If H is $O\left(1 / 2^{k}\right)$ universal, then the security is $O\left(q^{2} / 2^{k}\right)$. If H is $O\left(|M| / 2^{k}\right)$ universal, then the security is $O\left(|M| q^{2} / 2^{k}\right)$.

Can we get $O\left(q^{2} / 2^{k}\right)$ security using $O\left(|M| / 2^{k}\right)$ universal hashing? Yes, by randomizing the message

Theorem (security of hash then encrypt)

If H is ϵ-universal then

$$
\operatorname{Pr}[\text { Beeker wins }] \leq \epsilon \cdot q_{\text {mac }}^{2}+\epsilon \cdot q_{\text {forge }}
$$

where $q_{m a c} / q_{\text {forge }}$ is the number of MAC/forgery queries.

Corollary

$q=q_{\text {mac }}+q_{\text {forge }}$
If H is $O\left(1 / 2^{k}\right)$ universal, then the security is $O\left(q^{2} / 2^{k}\right)$. If H is $O\left(|M| / 2^{k}\right)$ universal, then the security is $O\left(|M| q^{2} / 2^{k}\right)$.

Can we get $O\left(q^{2} / 2^{k}\right)$ security using $O\left(|M| / 2^{k}\right)$ universal hashing? Yes, by randomizing the message using only $O(\log (|M|))$ random bits.

almost universal hash-functions

Definition (ϵ-universal hash function)

$H: \mathcal{K} \times \mathcal{M} \rightarrow \mathcal{T}$ is ϵ universal if

$$
\forall M \neq M^{\prime} \in \mathcal{M}: \operatorname{Pr}_{K \in \mathcal{K}}\left[H(K, M)=H\left(K, M^{\prime}\right)\right] \leq \epsilon
$$

- $H: \mathbb{Z}_{L}^{2} \times \mathbb{Z}_{L} \rightarrow \mathbb{Z}_{\ell}$ where $H_{x, y}(M)=(x \cdot M+y \bmod L) \bmod \ell$ is $1 / \ell$ universal.
- $H: \mathbb{Z}_{\ell} \times \mathbb{Z}_{\ell}^{d} \rightarrow \mathbb{Z}_{\ell}$ where $H_{x}\left(M_{1}, \ldots, M_{d}\right)=x \cdot M_{1}+x^{2} \cdot M_{2}+\cdots+x^{d} \cdot M_{d}$ is d / ℓ-universal

the salted hash-function paradigm

A salted hash function H is $\left(\epsilon_{\text {forge }}, \epsilon_{\text {mac }}\right)$ universal if

- Inputs collide with probability $\leq \epsilon_{\text {forge }}$ if salt is not random.
- Inputs collide with probability $\leq \epsilon_{\operatorname{mac}}$ if salt is random.

Definition $\left(\left(\epsilon_{\text {forge }}, \epsilon_{\text {mac }}\right)\right.$-universal salted hash function)

$H: \mathcal{P} \times \mathcal{K} \times \mathcal{M} \rightarrow \mathcal{T}$ is $\left(\epsilon_{\text {forge }}, \epsilon_{\text {mac }}\right)$ universal if $\forall(M, P) \neq\left(M^{\prime}, P^{\prime}\right):$

$$
\operatorname{Pr}_{K \in \mathcal{K},}\left[H(K, P, M) \neq H\left(K, P^{\prime}, M^{\prime}\right)\right] \leq \epsilon_{\text {forge }}
$$

$\forall\left(M, M^{\prime}, P\right):$

$$
\operatorname{Pr}_{K \in \mathcal{K}, P^{\prime} \in \mathcal{P}}\left[H(K, P, M) \neq H\left(K, P^{\prime}, M^{\prime}\right)\right] \leq \epsilon_{\operatorname{mac}}
$$

salted hash then encrypt

hash then encrypt

salted hash then encrypt
on each invocation a random salt P is chosen by the MAC

Sample K and \mathcal{E} at random
MAC queries

Forgery queries

Beeker wins if for some $j, \phi_{j}^{\prime \prime}=\phi_{j}^{\prime}$.

Theorem (security of salted hash then encrypt)

If H is $\left(\epsilon_{\text {forge }}, \epsilon_{\text {mac }}\right)$-universal then

$$
\operatorname{Pr}[\text { Beeker wins }] \leq \epsilon_{\text {mac }} \cdot q_{\text {mac }}^{2}+\epsilon_{\text {forge }} \cdot q_{\text {forge }}
$$

where $q_{m a c} / q_{\text {forge }}$ is the number of MAC/forgery queries.

Theorem (security of salted hash then encrypt)

If H is $\left(\epsilon_{\text {forge }}, \epsilon_{\text {mac }}\right)$-universal then

$$
\operatorname{Pr}[\text { Beeker wins }] \leq \epsilon_{\text {mac }} \cdot q_{\text {mac }}^{2}+\epsilon_{\text {forge }} \cdot q_{\text {forge }}
$$

where $q_{\text {mac }} / q_{\text {forge }}$ is the number of MAC/forgery queries.
To achieve optimal $O\left(q^{2} / 2^{k}\right)$ security $\left(q=q_{\text {mac }}+q_{\text {forge }}\right)$, we just need $\epsilon_{\text {mac }} \in \Theta\left(1 / 2^{k}\right)$ but $\epsilon_{\text {forge }}$ can be much bigger.

As the salt is part of the output, we want the domain \mathcal{P} for the salt to be small.
the generic result, proof of concept [1]

Theorem (generic construction)

Let $H:\{0,1\}^{L} \rightarrow\{0,1\}^{k}$ be $L / 2^{k}$ universal \& balanced
\exists permutation over $g:\{0,1\}^{L+\log (L)}$ such that with $P \in\{0,1\}^{\log L}$

$$
H^{\prime}(K, P, M):=H(K, g(M \| P))
$$

is $\left(\epsilon_{\text {forge }}, \epsilon_{\text {mac }}\right)$ universal with

$$
\epsilon_{\text {forge }}=(L+\log (L)) / 2^{k} \quad \epsilon_{\text {mac }}=2 / 2^{k}
$$

the generic result, proof of concept [2]

Generic Construction

- Optimal $\epsilon_{\text {mac }}=2 / 2^{k}$.
- Salt of length $\log (L)$ if H is $L / 2^{k}$ universal. In general: If H is $L^{c} / 2^{k}$-universal, then salt will be $c \cdot \log (L)$
- Non-constructive.

a concrete example: polynomial evaluation [1]

$H: \mathbb{Z}_{\ell} \times \mathbb{Z}_{\ell}^{d} \rightarrow \mathbb{Z}_{\ell}$ where
$H_{x}\left(M_{1}, \ldots, M_{d}\right)=x \cdot M_{1}+x^{2} \cdot M_{2}+\cdots+x^{d} \cdot M_{d}$ is d / ℓ-universal
Theorem (set constant coefficient completely random)
$H^{\prime}: \mathbb{Z}_{\ell} \times \mathbb{Z}_{\ell} \times \mathbb{Z}_{\ell}^{d} \rightarrow \mathbb{Z}_{\ell}$ where
$H_{x}^{\prime}\left(P, M_{1}, \ldots, M_{d}\right)=P+x \cdot M_{1}+x^{2} \cdot M_{2}+\cdots+x^{d} \cdot M_{d}$ is
$\left(\epsilon_{\text {forge }}, \epsilon_{\text {mac }}\right)$ universal $\epsilon_{\text {forge }}=d / \ell$ and optimal $\epsilon_{\text {mac }}=1 / \ell$.

Proof.

$H_{x}^{\prime}(P, M)=H_{x}^{\prime}\left(P^{\prime}, M^{\prime}\right)$ for exactly one possible $P \in \mathbb{Z}_{\ell}$, thus
$\epsilon_{\text {mac }}=1 / \ell$.

a concrete example: polynomial evaluation [1]

$H: \mathbb{Z}_{\ell} \times \mathbb{Z}_{\ell}^{d} \rightarrow \mathbb{Z}_{\ell}$ where
$H_{x}\left(M_{1}, \ldots, M_{d}\right)=x \cdot M_{1}+x^{2} \cdot M_{2}+\cdots+x^{d} \cdot M_{d}$ is d / ℓ-universal
Theorem (set constant coefficient completely random)
$H^{\prime}: \mathbb{Z}_{\ell} \times \mathbb{Z}_{\ell} \times \mathbb{Z}_{\ell}^{d} \rightarrow \mathbb{Z}_{\ell}$ where
$H_{x}^{\prime}\left(P, M_{1}, \ldots, M_{d}\right)=P+x \cdot M_{1}+x^{2} \cdot M_{2}+\cdots+x^{d} \cdot M_{d}$ is
$\left(\epsilon_{\text {forge }}, \epsilon_{\text {mac }}\right)$ universal $\epsilon_{\text {forge }}=d / \ell$ and optimal $\epsilon_{\text {mac }}=1 / \ell$.

Proof.

$H_{x}^{\prime}(P, M)=H_{x}^{\prime}\left(P^{\prime}, M^{\prime}\right)$ for exactly one possible $P \in \mathbb{Z}_{\ell}$, thus
$\epsilon_{\text {mac }}=1 / \ell$.
Trivial, optimal $\epsilon_{\text {mac }}$ but $|P|=\log (\ell)$ is large.

a concrete example: polynomial evaluation [2]

$H: \mathbb{Z}_{\ell} \times \mathbb{Z}_{\ell}^{d} \rightarrow \mathbb{Z}_{\ell}$ where
$H_{x}\left(M_{1}, \ldots, M_{d}\right)=x \cdot M_{1}+x^{2} \cdot M_{2}+\cdots+x^{d} \cdot M_{d}$ is d / ℓ-universal
Theorem (choose constant coefficient from a small set \mathcal{P})
$\exists \mathcal{P} \subset \mathbb{Z}_{\ell},|\mathcal{P}|=d^{3}$ s.t. $H^{\prime}: \mathcal{P} \times \mathbb{Z}_{\ell} \times \mathbb{Z}_{\ell}^{d} \rightarrow \mathbb{Z}_{\ell}$ where $H_{x}^{\prime}\left(P, M_{1}, \ldots, M_{d}\right)=P+x \cdot M_{1}+x^{2} \cdot M_{2}+\cdots+x^{d} \cdot M_{d}$ is
$\left(\epsilon_{\text {forge }}, \epsilon_{\text {mac }}\right)$ universal $\epsilon_{\text {forge }}=d / \ell$ and optimal $\epsilon_{\text {mac }}=2 / \ell$.

a concrete example: polynomial evaluation [2]

$H: \mathbb{Z}_{\ell} \times \mathbb{Z}_{\ell}^{d} \rightarrow \mathbb{Z}_{\ell}$ where
$H_{x}\left(M_{1}, \ldots, M_{d}\right)=x \cdot M_{1}+x^{2} \cdot M_{2}+\cdots+x^{d} \cdot M_{d}$ is d / ℓ-universal
Theorem (choose constant coefficient from a small set \mathcal{P})
$\exists \mathcal{P} \subset \mathbb{Z}_{\ell},|\mathcal{P}|=d^{3}$ s.t. $H^{\prime}: \mathcal{P} \times \mathbb{Z}_{\ell} \times \mathbb{Z}_{\ell}^{d} \rightarrow \mathbb{Z}_{\ell}$ where
$H_{x}^{\prime}\left(P, M_{1}, \ldots, M_{d}\right)=P+x \cdot M_{1}+x^{2} \cdot M_{2}+\cdots+x^{d} \cdot M_{d}$ is
$\left(\epsilon_{\text {forge }}, \epsilon_{\text {mac }}\right)$ universal $\epsilon_{\text {forge }}=d / \ell$ and optimal $\epsilon_{\text {mac }}=2 / \ell$.
Optimal $\epsilon_{\text {max }}$, small $|P|=3 \cdot \log (d)$.
No constructive way to choose \mathcal{P}, but choosing it at random will do with high probability.

Conclusions

- Introduced the concept of salted almost universal hash functions.
- Show their usefulness for hash then encrypt.
- Generic result: any XUH can be turned into a salted XUH where
- The random salt is very short.
- The collision probability with random salt $\left(\epsilon_{\text {mac }}\right)$ is optimal. Give concrete such transformations for polynomial evaluation.
- Moreover in the paper: transformation for Merkle-Damgård. Generic result for $X O R$-universal hash functions.

