
improving the security of MACs via randomized
message preprocessing

Yevgeniy Dodis (New York University)
Krzysztof Pietrzak (CWI Amsterdam)

March 26, 2007

FSE 2007 March 27, 2007

Symmetric Authentication: Message Authentication Codes

M

M ′

M M ′

FSE 2007 March 27, 2007

Symmetric Authentication: Message Authentication Codes

M,K

φ = MAC (K ,M)

K

φ′ ?
= MAC (K ,M ′)

M, φ M ′, φ′

◮ Kermit and Peggy share a secret key K .

◮ Kermit sends an authentication tag φ = MAC (K ,M) together
with message M.

◮ Peggy accepts M ′ iff φ′ = MAC (K ,M ′).

FSE 2007 March 27, 2007

Symmetric Authentication: Message Authentication Codes

M,K

φ = MAC (K ,M)

K

φ′ ?
= MAC (K ,M ′)

M, φ M ′, φ′

◮ Kermit and Peggy share a secret key K .

◮ Kermit sends an authentication tag φ = MAC (K ,M) together
with message M.

◮ Peggy accepts M ′ iff φ′ = MAC (K ,M ′).
◮ Security: It should be hard for Beeker (who does not know K)

to come up with a pair (M ′, φ′) where
◮ φ′ = MAC (K , M ′)
◮ Kermit did not already send (M ′, φ)

FSE 2007 March 27, 2007

Asymmetric Authentication: Digital Signatures

M

M M ′

FSE 2007 March 27, 2007

Asymmetric Authentication: Digital Signatures

M,Sk,Pk

φ = Sign(Sk,M)

Pk Pk

Verify(Pk, φ′,M ′)

M, φ M ′, φ′

◮ Kermit generates a secret/public-key par Sk,Pk and send Pk

to Peggy over an authentic chanell.
◮ Kermit sends Signature φ = Sign(Sk,M) together with

message M.
◮ Peggy accepts M ′ iff Verify(Pk, φ′,M ′) = accept.

FSE 2007 March 27, 2007

Asymmetric Authentication: Digital Signatures

M,Sk,Pk

φ = Sign(Sk,M)

Pk Pk

Verify(Pk, φ′,M ′)

M, φ M ′, φ′

◮ Kermit generates a secret/public-key par Sk,Pk and send Pk

to Peggy over an authentic chanell.
◮ Kermit sends Signature φ = Sign(Sk,M) together with

message M.
◮ Peggy accepts M ′ iff Verify(Pk, φ′,M ′) = accept.
◮ Security: It should be hard for Beeker (who does not know

Sk) to come up with a pair (M ′, φ′) where
◮ Verify(Pk , φ′, M ′) = accept
◮ Kermit did not already send (M ′, φ)

FSE 2007 March 27, 2007

Hash then Sign/MAC/Encrypt

M

CRHF

Sk Sign

φ

M

CRHF

K MAC

φ

hash & Sign hash & MAC

◮ CRHF: Pr [A → X ,X ′ : H(X) = H(X ′)] = small

FSE 2007 March 27, 2007

Hash then Sign/MAC/Encrypt

M

CRHF

Sk Sign

φ

M

CRHF

K MAC

φ

M

R UOWHF

Sk Sign

φ,R

hash & Sign hash & MAC hash & Sign

◮ CRHF: Pr [A → X ,X ′ : H(X) = H(X ′)] = small

◮ UOWHF: maxX PrR [A(R) → X ′ : HR(X) = HR(X ′)] = small

FSE 2007 March 27, 2007

Hash then Sign/MAC/Encrypt

M

CRHF

Sk Sign

φ

M

CRHF

K MAC

φ

M

R UOWHF

Sk Sign

φ,R

M

Khash XUH

Kenc Enc

φ

hash & Sign hash & MAC hash & Sign hash & encrypt

◮ CRHF: Pr [A → X ,X ′ : H(X) = H(X ′)] = small

◮ UOWHF: maxX PrR [A(R) → X ′ : HR(X) = HR(X ′)] = small

◮ ǫ-XUH: maxX ,X ′ PrKhash
[HKhash

(X) = HKhash
(X ′)] ≤ ǫ

FSE 2007 March 27, 2007

Hash then Encrypt

M

Khash XUH

Kenc Enc

φ

FSE 2007 March 27, 2007

Hash then Encrypt

M

K XUH

E

φ

To analyze the security we replace Enc with a uniformly random
permutation E : {0, 1}k → {0, 1}k .

FSE 2007 March 27, 2007

Sample K and E at random

MAC queries Forgery queries

H K

E

Mi

φi

K H

E

φ′
j φ′′

j

M ′
j

Beeker wins if for some j , φ′′
j = φ′

j .

Theorem (security of hash then encrypt)

If H is ǫ-universal then

Pr[Beeker wins] ≤ ǫ · q2
mac + ǫ · qforge

where qmac/qforge is the number of MAC/forgery queries.

FSE 2007 March 27, 2007

Theorem (security of hash then encrypt)

If H is ǫ-universal then

Pr[Beeker wins] ≤ ǫ · q2
mac + ǫ · qforge

where qmac/qforge is the number of MAC/forgery queries.

Proof.

Pr[Beeker wins] ≤ Pr[collision] + Pr[forgery|no collision]

≤ ǫ · q2
mac + ǫ · qforge

FSE 2007 March 27, 2007

Theorem (security of hash then encrypt)

If H is ǫ-universal then

Pr[Beeker wins] ≤ ǫ · q2
mac + ǫ · qforge

where qmac/qforge is the number of MAC/forgery queries.

Corollary

q = qmac + qforge

If H is O(1/2k) universal, then the security is O(q2/2k).
If H is O(|M|/2k) universal, then the security is O(|M|q2/2k).

FSE 2007 March 27, 2007

Theorem (security of hash then encrypt)

If H is ǫ-universal then

Pr[Beeker wins] ≤ ǫ · q2
mac + ǫ · qforge

where qmac/qforge is the number of MAC/forgery queries.

Corollary

q = qmac + qforge

If H is O(1/2k) universal, then the security is O(q2/2k).
If H is O(|M|/2k) universal, then the security is O(|M|q2/2k).

Can we get O(q2/2k) security using O(|M|/2k) universal hashing?

FSE 2007 March 27, 2007

Theorem (security of hash then encrypt)

If H is ǫ-universal then

Pr[Beeker wins] ≤ ǫ · q2
mac + ǫ · qforge

where qmac/qforge is the number of MAC/forgery queries.

Corollary

q = qmac + qforge

If H is O(1/2k) universal, then the security is O(q2/2k).
If H is O(|M|/2k) universal, then the security is O(|M|q2/2k).

Can we get O(q2/2k) security using O(|M|/2k) universal hashing?
Yes, by randomizing the message

FSE 2007 March 27, 2007

Theorem (security of hash then encrypt)

If H is ǫ-universal then

Pr[Beeker wins] ≤ ǫ · q2
mac + ǫ · qforge

where qmac/qforge is the number of MAC/forgery queries.

Corollary

q = qmac + qforge

If H is O(1/2k) universal, then the security is O(q2/2k).
If H is O(|M|/2k) universal, then the security is O(|M|q2/2k).

Can we get O(q2/2k) security using O(|M|/2k) universal hashing?
Yes, by randomizing the message using only O(log(|M|)) random
bits.

FSE 2007 March 27, 2007

almost universal hash-functions

Definition (ǫ-universal hash function)

H : K ×M → T is ǫ universal if

∀M 6= M ′ ∈ M : Pr
K∈K

[H(K ,M) = H(K ,M ′)] ≤ ǫ

◮ H : Z
2
L ×ZL → Zℓ where Hx ,y(M) = (x ·M + y mod L) mod ℓ

is 1/ℓ universal.

◮ H : Zℓ × Z
d
ℓ → Zℓ where

Hx(M1, . . . ,Md) = x · M1 + x2 · M2 + · · · + xd · Md is
d/ℓ-universal

FSE 2007 March 27, 2007

the salted hash-function paradigm

A salted hash function H is (ǫforge , ǫmac) universal if

◮ Inputs collide with probability ≤ ǫforge if salt is not random.

◮ Inputs collide with probability ≤ ǫmac if salt is random.

Definition ((ǫforge , ǫmac)-universal salted hash function)

H : P ×K×M → T is (ǫforge , ǫmac) universal if
∀(M,P) 6= (M ′,P ′) :

Pr
K∈K,

[H(K ,P ,M) 6= H(K ,P ′,M ′)] ≤ ǫforge

∀(M,M ′,P) :

Pr
K∈K,P′∈P

[H(K ,P ,M) 6= H(K ,P ′,M ′)] ≤ ǫmac

FSE 2007 March 27, 2007

salted hash then encrypt

M

K ǫ − XUH

E

φ

M

K ,P (ǫforge , ǫmac) − XUH

E

φ,P

hash then encrypt salted hash then encrypt

on each invocation a random
salt P is chosen by the MAC

FSE 2007 March 27, 2007

Sample K and E at random

MAC queries Forgery queries

H K ,P ∈ P

E

Mi

φi ,P

K H

E

φ′
j φ′′

j

P ,M ′
j

Beeker wins if for some j , φ′′
j = φ′

j .

Theorem (security of salted hash then encrypt)

If H is (ǫforge , ǫmac)-universal then

Pr[Beeker wins] ≤ ǫmac · q
2
mac + ǫforge · qforge

where qmac/qforge is the number of MAC/forgery queries.

FSE 2007 March 27, 2007

Theorem (security of salted hash then encrypt)

If H is (ǫforge , ǫmac)-universal then

Pr[Beeker wins] ≤ ǫmac · q
2
mac + ǫforge · qforge

where qmac/qforge is the number of MAC/forgery queries.

To achieve optimal O(q2/2k) security (q = qmac + qforge), we just
need ǫmac ∈ Θ(1/2k) but ǫforge can be much bigger.

As the salt is part of the output, we want the domain P for the
salt to be small.

FSE 2007 March 27, 2007

the generic result, proof of concept [1]

M ∈ {0, 1}L

H

{0, 1}k ⇒

M‖P ∈ {0, 1}L × {0, 1}log L

g

H

{0, 1}k

Theorem (generic construction)

Let H : {0, 1}L → {0, 1}k be L/2k universal & balanced

∃ permutation over g : {0, 1}L+log(L) such that with P ∈ {0, 1}log L

H ′(K ,P ,M) := H(K , g(M‖P))

is (ǫforge , ǫmac) universal with

ǫforge = (L + log(L))/2k ǫmac = 2/2k

FSE 2007 March 27, 2007

the generic result, proof of concept [2]

Generic Construction

◮ Optimal ǫmac = 2/2k .

◮ Salt of length log(L) if H is L/2k universal.
In general: If H is Lc/2k -universal, then salt will be c · log(L)

◮ Non-constructive.

FSE 2007 March 27, 2007

a concrete example: polynomial evaluation [1]

H : Zℓ × Z
d
ℓ → Zℓ where

Hx(M1, . . . ,Md) = x ·M1 + x2 ·M2 + · · ·+ xd ·Md is d/ℓ-universal

Theorem (set constant coefficient completely random)

H ′ : Zℓ × Zℓ × Z
d
ℓ → Zℓ where

H ′
x(P ,M1, . . . ,Md) = P + x · M1 + x2 · M2 + · · · + xd · Md is

(ǫforge , ǫmac) universal ǫforge = d/ℓ and optimal ǫmac = 1/ℓ.

Proof.

H ′
x(P ,M) = H ′

x(P
′,M ′) for exactly one possible P ∈ Zℓ, thus

ǫmac = 1/ℓ.

FSE 2007 March 27, 2007

a concrete example: polynomial evaluation [1]

H : Zℓ × Z
d
ℓ → Zℓ where

Hx(M1, . . . ,Md) = x ·M1 + x2 ·M2 + · · ·+ xd ·Md is d/ℓ-universal

Theorem (set constant coefficient completely random)

H ′ : Zℓ × Zℓ × Z
d
ℓ → Zℓ where

H ′
x(P ,M1, . . . ,Md) = P + x · M1 + x2 · M2 + · · · + xd · Md is

(ǫforge , ǫmac) universal ǫforge = d/ℓ and optimal ǫmac = 1/ℓ.

Proof.

H ′
x(P ,M) = H ′

x(P
′,M ′) for exactly one possible P ∈ Zℓ, thus

ǫmac = 1/ℓ.

Trivial, optimal ǫmac but |P | = log(ℓ) is large.

FSE 2007 March 27, 2007

a concrete example: polynomial evaluation [2]

H : Zℓ × Z
d
ℓ → Zℓ where

Hx(M1, . . . ,Md) = x ·M1 + x2 ·M2 + · · ·+ xd ·Md is d/ℓ-universal

Theorem (choose constant coefficient from a small set P)

∃P ⊂ Zℓ, |P| = d3 s.t. H ′ : P × Zℓ × Z
d
ℓ → Zℓ where

H ′
x(P ,M1, . . . ,Md) = P + x · M1 + x2 · M2 + · · · + xd · Md is

(ǫforge , ǫmac) universal ǫforge = d/ℓ and optimal ǫmac = 2/ℓ.

FSE 2007 March 27, 2007

a concrete example: polynomial evaluation [2]

H : Zℓ × Z
d
ℓ → Zℓ where

Hx(M1, . . . ,Md) = x ·M1 + x2 ·M2 + · · ·+ xd ·Md is d/ℓ-universal

Theorem (choose constant coefficient from a small set P)

∃P ⊂ Zℓ, |P| = d3 s.t. H ′ : P × Zℓ × Z
d
ℓ → Zℓ where

H ′
x(P ,M1, . . . ,Md) = P + x · M1 + x2 · M2 + · · · + xd · Md is

(ǫforge , ǫmac) universal ǫforge = d/ℓ and optimal ǫmac = 2/ℓ.

Optimal ǫmac , small |P | = 3 · log(d).
No constructive way to choose P, but choosing it at random will
do with high probability.

FSE 2007 March 27, 2007

Conclusions

◮ Introduced the concept of salted almost universal hash
functions.

◮ Show their usefulness for hash then encrypt.

◮ Generic result: any XUH can be turned into a salted XUH
where

◮ The random salt is very short.
◮ The collision probability with random salt (ǫmac) is optimal.

Give concrete such transformations for polynomial evaluation.

◮ Moreover in the paper: transformation for Merkle-Damg̊ard.
Generic result for XOR-universal hash functions.

FSE 2007 March 27, 2007

