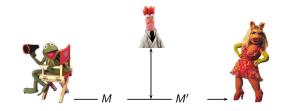
improving the security of MACs via randomized message preprocessing

Yevgeniy Dodis (New York University) Krzysztof Pietrzak (CWI Amsterdam)

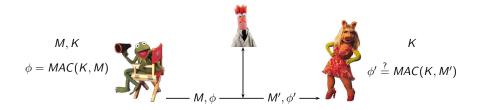
March 26, 2007

Symmetric Authentication: Message Authentication Codes



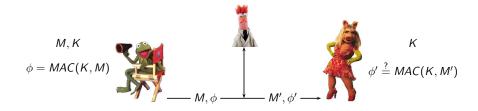
M'

Symmetric Authentication: Message Authentication Codes



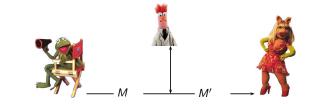
- Kermit and Peggy share a secret key K.
- Kermit sends an authentication tag \(\phi = MAC(K, M)\) together with message \(M.\)
- Peggy accepts M' iff $\phi' = MAC(K, M')$.

Symmetric Authentication: Message Authentication Codes

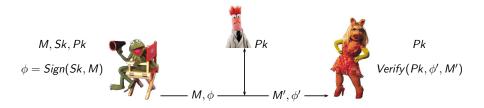


- Kermit and Peggy share a secret key K.
- Kermit sends an authentication tag \(\phi = MAC(K, M)\) together with message M.
- Peggy accepts M' iff $\phi' = MAC(K, M')$.
- ► Security: It should be hard for Beeker (who does not know K) to come up with a pair (M', φ') where
 - $\phi' = MAC(K, M')$
 - Kermit did not already send (M', ϕ)

Asymmetric Authentication: Digital Signatures

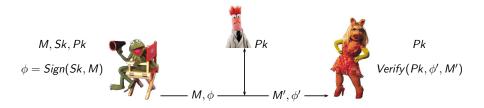


Asymmetric Authentication: Digital Signatures



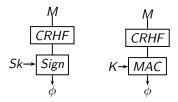
- Kermit generates a secret/public-key par Sk, Pk and send Pk to Peggy over an authentic chanell.
- ▶ Kermit sends Signature φ = Sign(Sk, M) together with message M.
- Peggy accepts M' iff $Verify(Pk, \phi', M') = accept$.

Asymmetric Authentication: Digital Signatures



- Kermit generates a secret/public-key par Sk, Pk and send Pk to Peggy over an authentic chanell.
- ▶ Kermit sends Signature φ = Sign(Sk, M) together with message M.
- Peggy accepts M' iff $Verify(Pk, \phi', M') = accept$.
- Security: It should be hard for Beeker (who does not know Sk) to come up with a pair (M', \u03c6') where
 - Verify $(Pk, \phi', M') = accept$
 - Kermit did not already send (M', ϕ)

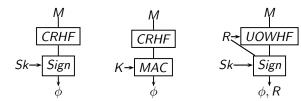
Hash then Sign/MAC/Encrypt



hash & Sign hash & MAC

▶ CRHF: $Pr[A \rightarrow X, X' : H(X) = H(X')] = small$

Hash then Sign/MAC/Encrypt



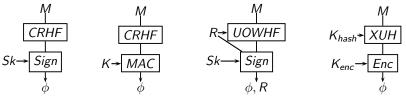
hash & Sign

hash & MAC

hash & Sign

- CRHF: $Pr[A \rightarrow X, X' : H(X) = H(X')] = small$
- ▶ UOWHF: max_X $Pr_R[A(R) \rightarrow X' : H_R(X) = H_R(X')] = small$

Hash then Sign/MAC/Encrypt



hash & Sign

FSE 2007

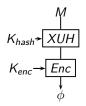
hash & MAC

hash & Sign

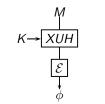
hash & encrypt

- ► CRHF: $Pr[A \rightarrow X, X' : H(X) = H(X')] = small$
- ▶ UOWHF: max_X $Pr_R[A(R) \rightarrow X' : H_R(X) = H_R(X')] = small$
- ► ϵ -XUH: max_{X,X'} $Pr_{K_{hash}}[H_{K_{hash}}(X) = H_{K_{hash}}(X')] \le \epsilon$

Hash then Encrypt

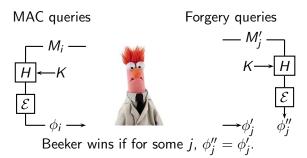


Hash then Encrypt



To analyze the security we replace *Enc* with a uniformly random permutation $\mathcal{E} : \{0, 1\}^k \to \{0, 1\}^k$.

Sample K and \mathcal{E} at random



Theorem (security of hash then encrypt)

If H is ϵ -universal then

$$\Pr[Beeker \ wins] \le \epsilon \cdot q_{mac}^2 + \epsilon \cdot q_{forge}$$

where q_{mac}/q_{forge} is the number of MAC/forgery queries.

If H is ϵ -universal then

$$\Pr[Beeker \ wins] \le \epsilon \cdot q_{mac}^2 + \epsilon \cdot q_{forge}$$

where q_{mac}/q_{forge} is the number of MAC/forgery queries.

Proof.

If H is ϵ -universal then

$$\Pr[Beeker \ wins] \le \epsilon \cdot q_{mac}^2 + \epsilon \cdot q_{forge}$$

where q_{mac}/q_{forge} is the number of MAC/forgery queries.

Corollary

 $q = q_{mac} + q_{forge}$ If H is $O(1/2^k)$ universal, then the security is $O(q^2/2^k)$. If H is $O(|M|/2^k)$ universal, then the security is $O(|M|q^2/2^k)$.

If H is ϵ -universal then

$$\Pr[Beeker \ wins] \le \epsilon \cdot q_{mac}^2 + \epsilon \cdot q_{forge}$$

where q_{mac}/q_{forge} is the number of MAC/forgery queries.

Corollary

 $q = q_{mac} + q_{forge}$ If H is $O(1/2^k)$ universal, then the security is $O(q^2/2^k)$. If H is $O(|M|/2^k)$ universal, then the security is $O(|M|q^2/2^k)$.

Can we get $O(q^2/2^k)$ security using $O(|M|/2^k)$ universal hashing?

If H is ϵ -universal then

$$\Pr[Beeker \ wins] \le \epsilon \cdot q_{mac}^2 + \epsilon \cdot q_{forge}$$

where q_{mac}/q_{forge} is the number of MAC/forgery queries.

Corollary

 $q = q_{mac} + q_{forge}$ If H is $O(1/2^k)$ universal, then the security is $O(q^2/2^k)$. If H is $O(|M|/2^k)$ universal, then the security is $O(|M|q^2/2^k)$.

Can we get $O(q^2/2^k)$ security using $O(|M|/2^k)$ universal hashing? Yes, by randomizing the message

If H is ϵ -universal then

$$\Pr[Beeker \ wins] \le \epsilon \cdot q_{mac}^2 + \epsilon \cdot q_{forge}$$

where q_{mac}/q_{forge} is the number of MAC/forgery queries.

Corollary

 $q = q_{mac} + q_{forge}$ If H is $O(1/2^k)$ universal, then the security is $O(q^2/2^k)$. If H is $O(|M|/2^k)$ universal, then the security is $O(|M|q^2/2^k)$.

Can we get $O(q^2/2^k)$ security using $O(|M|/2^k)$ universal hashing? Yes, by randomizing the message using only $O(\log(|M|))$ random bits.

Definition (ϵ -universal hash function)

 $H: \mathcal{K} \times \mathcal{M} \to \mathcal{T}$ is ϵ universal if

$$\forall M \neq M' \in \mathcal{M} : \Pr_{K \in \mathcal{K}}[H(K, M) = H(K, M')] \leq \epsilon$$

- H: Z²_L × Z_L → Z_ℓ where H_{x,y}(M) = (x · M + y mod L) mod ℓ is 1/ℓ universal.
- ► $H : \mathbb{Z}_{\ell} \times \mathbb{Z}_{\ell}^{d} \to \mathbb{Z}_{\ell}$ where $H_{x}(M_{1}, ..., M_{d}) = x \cdot M_{1} + x^{2} \cdot M_{2} + \cdots + x^{d} \cdot M_{d}$ is d/ℓ -universal

the salted hash-function paradigm

A salted hash function H is $(\epsilon_{\textit{forge}}, \epsilon_{\textit{mac}})$ universal if

- Inputs collide with probability $\leq \epsilon_{forge}$ if salt is not random.
- Inputs collide with probability $\leq \epsilon_{mac}$ if salt is random.

Definition $((\epsilon_{forge}, \epsilon_{mac})$ -universal salted hash function)

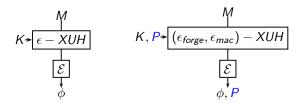
 $H: \mathcal{P} \times \mathcal{K} \times \mathcal{M} \to \mathcal{T} \text{ is } (\epsilon_{forge}, \epsilon_{mac}) \text{ universal if } \\ \forall (M, P) \neq (M', P'):$

 $\Pr_{K \in \mathcal{K},} [H(K, P, M) \neq H(K, P', M')] \leq \epsilon_{\textit{forge}}$

 $\forall (M, M', P)$:

 $\Pr_{K \in \mathcal{K}, P' \in \mathcal{P}}[H(K, P, M) \neq H(K, P', M')] \leq \epsilon_{mac}$

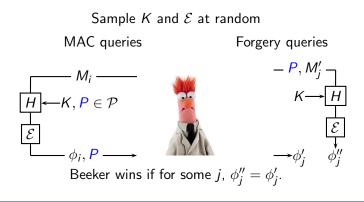
salted hash then encrypt



hash then encrypt

salted hash then encrypt

on each invocation a random salt P is chosen by the MAC



If H is $(\epsilon_{forge}, \epsilon_{mac})$ -universal then

$$\Pr[Beeker \ wins] \leq \epsilon_{mac} \cdot q_{mac}^2 + \epsilon_{forge} \cdot q_{forge}$$

where q_{mac}/q_{forge} is the number of MAC/forgery queries.

If H is $(\epsilon_{forge}, \epsilon_{mac})$ -universal then

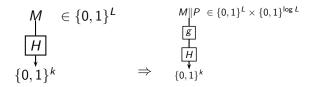
 $\Pr[Beeker wins] \leq \epsilon_{mac} \cdot q_{mac}^2 + \epsilon_{forge} \cdot q_{forge}$

where q_{mac}/q_{forge} is the number of MAC/forgery queries.

To achieve optimal $O(q^2/2^k)$ security $(q = q_{mac} + q_{forge})$, we just need $\epsilon_{mac} \in \Theta(1/2^k)$ but ϵ_{forge} can be much bigger.

As the salt is part of the output, we want the domain \mathcal{P} for the salt to be small.

the generic result, proof of concept [1]



Theorem (generic construction)

Let $H : \{0,1\}^L \to \{0,1\}^k$ be $L/2^k$ universal & balanced \exists permutation over $g : \{0,1\}^{L+\log(L)}$ such that with $P \in \{0,1\}^{\log L}$

$$H'(K,P,M) := H(K,g(M||P))$$

is $(\epsilon_{forge}, \epsilon_{mac})$ universal with

$$\epsilon_{forge} = (L + \log(L))/2^k \qquad \epsilon_{mac} = 2/2^k$$

Generic Construction

- Optimal $\epsilon_{mac} = 2/2^k$.
- Salt of length log(L) if H is L/2^k universal.
 In general: If H is L^c/2^k-universal, then salt will be c · log(L)
- Non-constructive.

 $\begin{array}{l} H: \mathbb{Z}_{\ell} \times \mathbb{Z}_{\ell}^{d} \rightarrow \mathbb{Z}_{\ell} \text{ where} \\ H_{x}(M_{1}, \ldots, M_{d}) = x \cdot M_{1} + x^{2} \cdot M_{2} + \cdots + x^{d} \cdot M_{d} \text{ is } d/\ell \text{-universal} \end{array}$

Theorem (set constant coefficient completely random)

$$\begin{array}{l} H': \mathbb{Z}_{\ell} \times \mathbb{Z}_{\ell} \times \mathbb{Z}_{\ell}^{d} \rightarrow \mathbb{Z}_{\ell} \text{ where} \\ H'_{x}(P, M_{1}, \ldots, M_{d}) = P + x \cdot M_{1} + x^{2} \cdot M_{2} + \cdots + x^{d} \cdot M_{d} \text{ is} \\ (\epsilon_{\textit{forge}}, \epsilon_{\textit{mac}}) \text{ universal } \epsilon_{\textit{forge}} = d/\ell \text{ and optimal } \epsilon_{\textit{mac}} = 1/\ell. \end{array}$$

Proof.

 $H'_{x}(P,M) = H'_{x}(P',M')$ for exactly one possible $P \in \mathbb{Z}_{\ell}$, thus $\epsilon_{mac} = 1/\ell$.

 $\begin{array}{l} H: \mathbb{Z}_{\ell} \times \mathbb{Z}_{\ell}^{d} \rightarrow \mathbb{Z}_{\ell} \text{ where} \\ H_{x}(M_{1}, \ldots, M_{d}) = x \cdot M_{1} + x^{2} \cdot M_{2} + \cdots + x^{d} \cdot M_{d} \text{ is } d/\ell \text{-universal} \end{array}$

Theorem (set constant coefficient completely random)

$$\begin{array}{l} H': \mathbb{Z}_{\ell} \times \mathbb{Z}_{\ell} \times \mathbb{Z}_{\ell}^{d} \rightarrow \mathbb{Z}_{\ell} \text{ where} \\ H'_{x}(P, M_{1}, \ldots, M_{d}) = P + x \cdot M_{1} + x^{2} \cdot M_{2} + \cdots + x^{d} \cdot M_{d} \text{ is} \\ (\epsilon_{\textit{forge}}, \epsilon_{\textit{mac}}) \text{ universal } \epsilon_{\textit{forge}} = d/\ell \text{ and optimal } \epsilon_{\textit{mac}} = 1/\ell. \end{array}$$

Proof.

 $H'_{x}(P,M) = H'_{x}(P',M')$ for exactly one possible $P \in \mathbb{Z}_{\ell}$, thus $\epsilon_{mac} = 1/\ell$.

Trivial, optimal ϵ_{mac} but $|P| = \log(\ell)$ is large.

$$\begin{aligned} H : \mathbb{Z}_{\ell} \times \mathbb{Z}_{\ell}^{d} \to \mathbb{Z}_{\ell} \text{ where} \\ H_{x}(M_{1}, \dots, M_{d}) &= x \cdot M_{1} + x^{2} \cdot M_{2} + \dots + x^{d} \cdot M_{d} \text{ is } d/\ell \text{-universal} \end{aligned}$$

$$\begin{aligned} \text{Theorem (choose constant coefficient from a small set } \mathcal{P}) \\ \exists \mathcal{P} \subset \mathbb{Z}_{\ell}, |\mathcal{P}| &= d^{3} \text{ s.t. } H' : \mathcal{P} \times \mathbb{Z}_{\ell} \times \mathbb{Z}_{\ell}^{d} \to \mathbb{Z}_{\ell} \text{ where} \\ H'_{x}(\mathcal{P}, M_{1}, \dots, M_{d}) &= \mathcal{P} + x \cdot M_{1} + x^{2} \cdot M_{2} + \dots + x^{d} \cdot M_{d} \text{ is} \\ (\epsilon_{forge}, \epsilon_{mac}) \text{ universal } \epsilon_{forge} &= d/\ell \text{ and optimal } \epsilon_{mac} = 2/\ell. \end{aligned}$$

$$\begin{aligned} H : \mathbb{Z}_{\ell} \times \mathbb{Z}_{\ell}^{d} &\to \mathbb{Z}_{\ell} \text{ where} \\ H_{x}(M_{1}, \ldots, M_{d}) &= x \cdot M_{1} + x^{2} \cdot M_{2} + \cdots + x^{d} \cdot M_{d} \text{ is } d/\ell \text{-universal} \end{aligned}$$

Theorem (choose constant coefficient from a small set \mathcal{P})
$$\exists \mathcal{P} \subset \mathbb{Z}_{\ell}, |\mathcal{P}| &= d^{3} \text{ s.t. } H' : \mathcal{P} \times \mathbb{Z}_{\ell} \times \mathbb{Z}_{\ell}^{d} \to \mathbb{Z}_{\ell} \text{ where} \end{aligned}$$

 $H'_{x}(P, M_{1}, ..., M_{d}) = P + x \cdot M_{1} + x^{2} \cdot M_{2} + \cdots + x^{d} \cdot M_{d}$ is $(\epsilon_{forge}, \epsilon_{mac})$ universal $\epsilon_{forge} = d/\ell$ and optimal $\epsilon_{mac} = 2/\ell$.

Optimal ϵ_{mac} , small $|P| = 3 \cdot \log(d)$. No constructive way to choose \mathcal{P} , but choosing it at random will do with high probability.

Conclusions

- Introduced the concept of *salted* almost universal hash functions.
- Show their usefulness for hash then encrypt.
- Generic result: any XUH can be turned into a salted XUH where
 - The random salt is very short.
 - The collision probability with random salt (ϵ_{mac}) is optimal.

Give concrete such transformations for polynomial evaluation.

 Moreover in the paper: transformation for Merkle-Damgård. Generic result for XOR-universal hash functions.

