Cryptanalysis of Achterbahn-128/80

Maria Naya-Plasencia

INRIA-Projet CODES
 FRANCE

I NRIA

Outline

1 Achterbahn
2 Tools used in our cryptanalysis
3 Cryptanalysis of Achterbahn-128/80

Achterbahn [Gammel-Göttfert-Kniffler05]

- Achterbahn version 1, version 2, 128-80.
- version 1 cryptanalysed by Johansson, Meier, Muller.
- version 2 cryptanalysed by Hell, Johansson.
$1 / 23$

Achterbahn-128/80 (July 2006)

Achterbahn-128: key size $=128$ bits

- 13 primitive NLFSRs of length $L_{i}=21+i, 0 \leq i \leq 12$
- Least significant bit of each NLFSR forced to 1 at the initialization process.
- Boolean combining function F :
- balanced
- correlation immunity order $=8$
- Inputs of $F \leftarrow$ shifted outputs of NLFSRs.
- Keystream length limited to 2^{63}.

Achterbahn-128/80 (July 2006)

Achterbahn-80: key size $=80$ bits

- 11 primitive NLFSRs of length $L_{i}=21+i, 1 \leq i \leq 11$
- Least significant bit of each NLFSR forced to 1 at the initialization process.
- Boolean function $G\left(x_{1}, \ldots, x_{11}\right)=F\left(0, x_{1}, \ldots, x_{11}, 0\right)$:
- balanced
- correlation immunity order $=6$
- Inputs of $G \leftarrow$ shifted outputs of NLFSRs.
- Keystream length limited to 2^{63}.

Tools used in our cryptanalysis

- Parity checks
- Exhaustive search for the internal states of some registers
- Decimation by the period of a register
- Linear approximations
- Speeding up the exhaustive search

Parity checks

Let $\left(s_{1}(t)\right)_{t \geq 0}, \ldots,\left(s_{n}(t)\right)_{t \geq 0}$ be n sequences of periods T_{1}, \ldots, T_{n}, and $\forall t \geq 0, S(t)=\sum_{i=1}^{n} s_{i}(t)$.

- Then, for all $t \geq 0$,

$$
\sum_{E\left\{T_{1}, \ldots, T_{n}\right\rangle} S(t+\tau)=0
$$

$\left\langle T_{1}, \ldots, T_{n}\right\rangle$: set of all 2^{n} possible sums of T_{1}, \ldots, T_{n}.

- Example: $\left(s_{1}(t)\right),\left(s_{2}(t)\right)$ with periods T_{1} and T_{2}

$$
S(t)+S\left(t+T_{1}\right)+S\left(t+T_{2}\right)+S\left(t+T_{1}+T_{2}\right)=0
$$

Cryptanalysis with parity checks

- Linear approximation $\ell(t)=\sum_{j=1}^{m} x_{i_{j}}(t)$ where:

$$
\operatorname{Pr}[S(t)=\ell(t)]=\frac{1}{2}(1+\varepsilon)
$$

- Parity check: $\sum_{\tau \in\left\langle T_{i_{1}}, \ldots, T_{i_{m}}\right\rangle} \ell(t+\tau)=0$

$$
\operatorname{Pr}\left[\sum_{\tau \in\left\langle T_{i_{1}}, \ldots, T_{i_{m}}\right\rangle} S(t+\tau)=0\right] \geq \frac{1}{2}\left(1+\varepsilon^{2^{m}}\right)
$$

Exhaustive search over some registers

- Exhaustive search for the initial states of m^{\prime} registers

$$
\operatorname{Pr}\left[S(t)=\sum_{j=1}^{m^{\prime}} x_{i_{j}}(t)+\sum_{j=m^{\prime}+1}^{m} x_{i_{j}}(t)\right]=\frac{1}{2}(1+\varepsilon) .
$$

- The parity check has $2^{m-m^{\prime}}$ terms and satisfies:
$\operatorname{Pr}\left[\sum_{\tau \in\left\langle T_{i_{m^{\prime}+1}}, \ldots, T_{\left.i_{m}\right\rangle}\right.}\left(S(t+\tau)+\sum_{j=1}^{m^{\prime}} x_{i_{j}}(t+\tau)\right)=0\right]=\frac{1}{2}\left(1+\varepsilon^{2^{m-m^{\prime}}}\right)$

Required keystream length

Decoding problem $=2^{\sum_{j=1}^{m^{\prime}}\left(L_{i}-1\right)}$ sequences of length N transmitted through a binary symmetric channel of capacity

$$
\begin{gathered}
C(p)=C\left(\frac{1}{2}\left(1+\varepsilon^{2^{m-m^{\prime}}}\right)\right) \approx \frac{\left(\varepsilon^{2^{m-m^{\prime}}}\right)^{2}}{2 \ln 2} \\
N \approx \frac{\sum_{j=1}^{m^{\prime}}\left(L_{i_{j}}-1\right)}{C(p)} \approx \frac{2 \ln 2 \sum_{j=1}^{m^{\prime}}\left(L_{i_{j}}-1\right)}{\left(\varepsilon^{2^{m-m^{\prime}}}\right)^{2}}
\end{gathered}
$$

- Keystream bits needed:

$$
\left(\varepsilon^{2^{m-m^{\prime}}}\right)^{-2} \times 2 \ln 2 \times \sum_{j=1}^{m^{\prime}}\left(L_{i_{j}}-1\right)+\sum_{i=m^{\prime}+1}^{m} T_{i_{j}}
$$

8/23

Decimation [Hell-Johansson06]

- Parity check:

$$
p c(t)=\sum_{\tau \in\left\langle T_{\left.i_{i^{\prime}+1}+\ldots, \ldots, T_{i_{m}}\right\rangle}\right.}\left(S(t+\tau)+\sum_{j=1}^{m^{\prime}} x_{i_{j}}(t+\tau)\right)
$$

- Decimate by the periods of p linear terms i_{1}, \ldots, i_{p} :

$$
p c_{p}(t)=p c\left(t T_{i_{1}} \ldots T_{i_{p}}\right)
$$

- Exhaustive search for the remaining $\left(m^{\prime}-p\right)$ terms

Complexity

- Keystream bits needed:

$$
\left(\varepsilon^{2^{m-m^{\prime}}}\right)^{-2} \times 2 \ln 2 \times \sum_{j=p+1}^{m^{\prime}}\left(L_{i_{j}}-1\right) \times 2^{\sum_{j=1}^{p} L_{i}}+\sum_{j=m^{\prime}+1}^{m} 2^{L_{i}}
$$

- Time complexity:

$$
\left(\varepsilon^{2^{m-m^{\prime}}}\right)^{-2} \times 2 \ln 2 \times \sum_{j=p+1}^{m^{\prime}}\left(L_{i_{j}}-1\right) \times 2^{\sum_{j=p+1}^{m^{\prime}}\left(L_{i_{j}}-1\right)}
$$

10/23

Cryptanalysis of Achterbahn-80

- We use a linear approximation: as G has correlation immunity order 6, the best approximation by a 7 -variable function is affine [Canteaut-Trabia00]
- We use the following one:
$g_{2}\left(x_{1}, \ldots, x_{10}\right)=x_{1}+x_{3}+x_{4}+x_{5}+x_{6}+x_{7}+x_{10}$ with $\varepsilon=2^{-3}$.

11/23

Cryptanalysis of Achterbahn-80

- Linear approximation:
$g_{2}\left(x_{1}, \ldots, x_{10}\right)=\left(x_{4}+x_{7}\right)+\left(x_{5}+x_{6}\right)+x_{1}+x_{3}+x_{10}$ with $\varepsilon=2^{-3}$.
- Parity check:
$\ell \ell(t)=\ell(t)+\ell\left(t+T_{4} T_{7}\right)+\ell\left(t+T_{6} T_{5}\right)+\ell\left(t+T_{4} T_{7}+T_{6} T_{5}\right)$
- Decimate by the period of the register 10 .
- Exhaustive search over registers 1 and 3 .
$12 / 23$

Cryptanalysis of Achterbahn-80

- Keystream bits needed:

$$
\left(\varepsilon^{4}\right)^{-2} \times 2 \ln 2 \times\left(L_{1}+L_{3}-2\right) \times 2^{L_{10}}+2^{L_{4}+L_{7}}+2^{L_{5}+L_{6}}=2^{61} \text { bits. }
$$

- Time complexity:
$\left(\varepsilon^{4}\right)^{-2} \times 2 \ln 2 \times\left(L_{1}+L_{3}-2\right) \times 2^{L_{1}-1} 2^{L_{3}-1}=2^{74}$ operations.
- Time complexity can be reduced: final complexity 2^{61}.
- We recover the initial states of registers 1 and 3 .

Cryptanalysis of Achterbahn-128

- Linear approximation:
$\ell\left(x_{0}, \ldots, x_{12}\right)=\left(x_{0}+x_{3}+x_{7}\right)+\left(x_{4}+x_{10}\right)+\left(x_{8}+x_{9}\right)+x_{1}+x_{2}$ with $\varepsilon=2^{-3}$.
- Parity check:

$$
\ell \ell \ell(t)=\sum_{\tau \in\left\langle T_{0,3,7}, T_{4,10}, T_{8,9}\right\rangle} \ell(t+\tau),
$$

where $T_{0,3,7}=l \mathrm{~cm}\left(T_{0}, T_{3}, T_{7}\right)$

- Exhaustive search over registers 1 and $2 \rightarrow$ we can reduce this complexity making profit of the independence of the registers

Improving the exhaustive search

$$
\begin{aligned}
\varphi= & \sum_{t^{\prime}=0}^{2^{54}-2^{8}-1} \sum_{\tau \in\left\langle T_{0,3}, 7, T_{4,10}, T_{8,9}\right.}\left(S\left(t^{\prime}\right) \oplus x_{1}\left(t^{\prime}\right) \oplus x_{2}\left(t^{\prime}\right)\right) \\
& =\sum_{k=0}^{T_{2}-12^{2^{31}}+2^{8}-1} \sigma\left(t T_{2}+k\right) \oplus \sigma_{1}\left(t T_{2}+k\right) \oplus \sigma_{2}\left(t T_{2}+k\right) \\
& =\sum_{k=0}^{T_{2}-1}\left[\left(\sigma_{2}(k) \oplus 1\right)\left(\sum_{t=0}^{2^{31}+2^{8}-1} \sigma\left(t T_{2}+k\right) \oplus \sigma_{1}\left(t T_{2}+k\right)\right)+\right. \\
& \left.\sigma_{2}(k)\left(\left(2^{31}+2^{8}\right)-\sum_{t=0}^{2^{31}+2^{8}-1} \sigma\left(t T_{2}+k\right) \oplus \sigma_{1}\left(t T_{2}+k\right)\right)\right]
\end{aligned}
$$

$15 / 23$

Improving the exhaustive search

for $k=0$ to $T_{2}-1$ do
$V_{2}[k]=\sigma_{2}(k)$ for the all-one initial state.
end for
for each possible initial state of $R 1$ do
for $k=0$ to $T_{2}-1$ do

$$
V_{1}[k]=\sum_{t=0}^{2^{311}+2^{8}-1} \sigma\left(T_{2} t+k\right) \oplus \sigma_{1}\left(T_{2} t+k\right)
$$

end for
for each possible initial state i of $R 2$ do
$\sum_{k=0}^{T_{2}-1}\left[\left(V_{2}\left[k+i \bmod T_{2}\right] \oplus 1\right) V_{1}[k]+V_{2}\left[k+i \bmod T_{2}\right]\left(2^{31}+2^{8}-V_{1}[k]\right)\right]$
if we find the bias then
return the initial states of $R 1$ and $R 2$
end if
end for
end for
16/23

Reducing complexity with an FFT

- $\sum_{k=0}^{T_{2}-1}\left[\left(V_{2}[k+i] \oplus 1\right) V_{1}[k]+V_{2}[k+i]\left(2^{31}+2^{8}-V_{1}[k]\right)\right]$

$$
2^{L_{2}-1} \times T_{2} \times 2 \times 2^{5}
$$

- $\sum_{k=0}^{T_{2}-1}(-1)^{V_{2}[k+i]}\left(V_{1}[k]-\frac{2^{31}+2^{8}}{2}\right)+T_{2} \frac{2^{31}+2^{8}}{2}$
$T_{2} \log _{2} T_{2}$ with an FFT.

17/23

Cryptanalysis of Achterbahn-128

- Keystream bits needed:

$$
\left(\varepsilon^{8}\right)^{-2} \times 2 \ln 2 \times\left(L_{1}+L_{2}-2\right)+T_{0,3,7}+T_{4,10}+T_{8,9}<2^{61} \text { bits. }
$$

- Time complexity:

$$
2^{L_{1}-1} \times\left[2^{31} \times T_{2} \times\left(2^{4}+31\right)+T_{2} \log T_{2}\right]+T_{2} \times 2^{3}=2^{80.58} .
$$

18/23

Achterbahn- 128 limited to 2^{56} bits

- The same attack as before using the linear approximation:
$\ell\left(x_{0}, \ldots, x_{12}\right)=\left(x_{3}+x_{8}\right)+\left(x_{1}+x_{10}\right)+\left(x_{2}+x_{9}\right)+x_{0}+x_{4}+x_{7}$
- Improved exhaustive search over registers 0,4 and 7, considering R_{0} and R_{4} together.
- keystream bits needed $<2^{56}$
- time complexity: 2^{104} operations.

Achterbahn- 80 limited to 2^{52} bits

- Linear approximation:

$$
\ell\left(x_{1}, \ldots, x_{11}\right)=\left(x_{3}+x_{7}\right)+\left(x_{4}+x_{5}\right)+x_{1}+x_{6}+x_{10}
$$

- With the same attack as before, we need more than 2^{52} keystream bits.
- We can adapt the algorithm in order to reduce the data complexity.

Achterbahn-80 limited to 2^{52} bits

- Instead of one decimated sequence of parity checks of length $L, 4$ decimated sequences of length $L / 4$:

$$
\begin{aligned}
S\left(t\left(T_{1}\right)+i\right)+ & S\left(t\left(T_{1}\right)+i+T_{7} T_{3}\right)+S\left(t\left(T_{1}\right)+i+T_{4} T_{5}\right) \\
& +S\left(t\left(T_{1}\right)+i+T_{7} T_{3}+T_{4} T_{5}\right),
\end{aligned}
$$

for $i \in\{0, \ldots, 3\}$.

- Keystream bits needed $<2^{52}$
- Time complexity: 2^{67} operations.

Recovering the key

From the previously recovered initial states of some registers:

- Meet-in-the-middle attack on the key-loading.
- No need to invert all the clocking steps.

Additional complexity:

- Achterbahn-80: 2^{40} in time and 2^{41} in memory.
- Achterbahn-128: 2^{73} in time and 2^{48} in memory.

Conclusions

Attacks complexities against all versions of Achterbahn

version	data complexity	time complexity	references
v1 (80-bit)	2^{32}	2^{55}	[JMM06]
v2 (80-bit)	2^{64}	2^{67}	[HJ06]
v2 (80-bit)	2^{52}	2^{53}	
v80 (80-bit)	2^{61}	2^{55}	
v128 (128-bit)	2^{60}	$2^{80.58}$	

$23 / 23$

