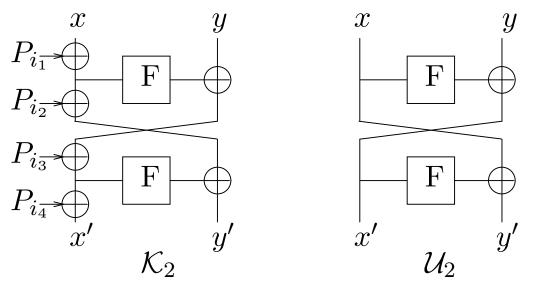
A New Class Of Weak Keys for Blowfish

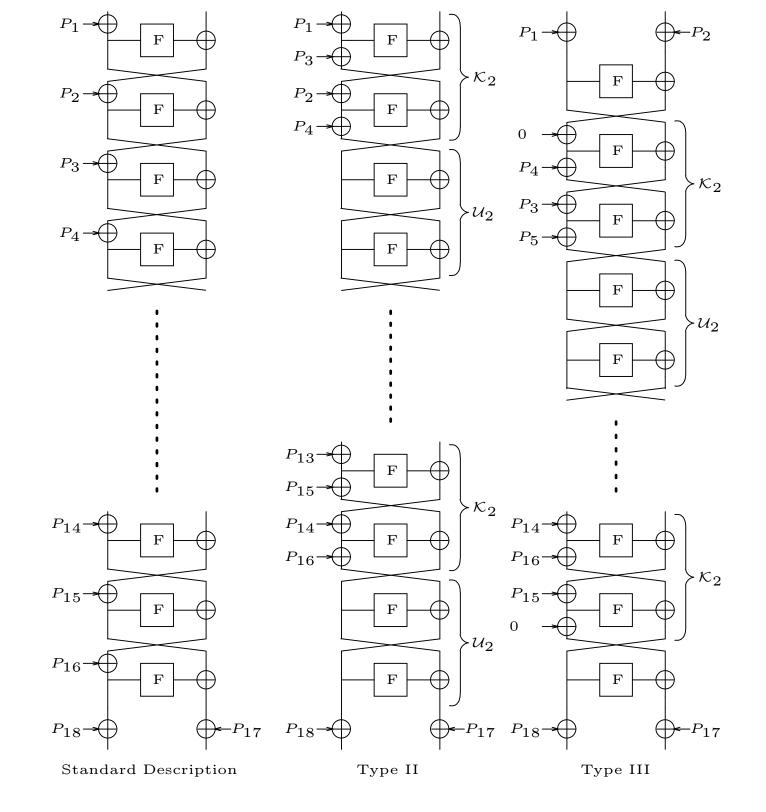
Orhun KARA and Cevat MANAP TÜBİTAK - UEKAE (National Research Institute of Electronics and Cryptology)

Redefining Blowfish

Key XORs in Blowfish can be moved around to generate two building blocks \mathcal{K}_2 and \mathcal{U}_2 .



 \mathcal{U}_2 is an involution and has 2^{32} fixed points of the form $(x, F(x) \oplus x)$. \mathcal{K}_2^{-1} is same as \mathcal{K}_2 with a different ordering of the subkeys.



Type III definition can be summarised as:

 $plaintext \rightarrow initW \rightarrow F \rightarrow S$

 $\rightarrow \mathcal{K}_2 \rightarrow S \rightarrow \mathcal{U}_2 \rightarrow S \rightarrow \mathcal{K}_2 \rightarrow S \rightarrow \mathcal{U}_2 \rightarrow S \rightarrow \mathcal{K}_2 \rightarrow S \rightarrow \mathcal{U}_2 \rightarrow S \rightarrow \mathcal{K}_2 \rightarrow \mathcal{$

Type III definition can be summarised as:

$$plaintext \to initW \to F \to S$$
$$\to \mathcal{K}_2 \to S \to \mathcal{K}_2 \to S \xrightarrow{X_0} \mathcal{U}_2 \xrightarrow{X_0} S \to \mathcal{K}_2 \to S \to \mathcal{U}_2 \to S \to \mathcal{K}_2 \to$$
$$S \to F \to finalW \to \text{ciphertext}$$

 X_0 is a fixed point of \mathcal{U}_2 .

Type III definition can be summarised as:

$$plaintext \to initW \to F \to S$$
$$\to \mathcal{K}_2 \to S \to \mathcal{U}_2 \to S \xrightarrow{X_2} \mathcal{K}_2 \xrightarrow{X_1} S \xrightarrow{X_0} \mathcal{U}_2 \xrightarrow{X_0} S \xrightarrow{X_1} \mathcal{K}_2 \xrightarrow{X_2} S \to \mathcal{U}_2 \to S \to \mathcal{K}_2 \to$$
$$S \to F \to finalW \to \text{ciphertext}$$

 X_0 is a fixed point of \mathcal{U}_2 .

Conditions on subkeys used in \mathcal{K}_2 .

Type III definition can be summarised as:

 $\begin{array}{c} \text{plaintext} \to initW \xrightarrow{X_8} F \xrightarrow{X_7} S\\ \xrightarrow{X_6} \mathcal{K}_2 \xrightarrow{X_5} S \xrightarrow{X_4} \mathcal{U}_2 \xrightarrow{X_3} S \xrightarrow{X_2} \mathcal{K}_2 \xrightarrow{X_1} S \xrightarrow{X_0} \mathcal{U}_2 \xrightarrow{X_0} S \xrightarrow{X_1} \mathcal{K}_2 \xrightarrow{X_2} S \xrightarrow{X_3} \mathcal{U}_2 \xrightarrow{X_4} S \xrightarrow{X_5} \mathcal{K}_2 \xrightarrow{X_6}\\ S \xrightarrow{X_7} F \xrightarrow{X_8} finalW \to \text{ciphertext} \end{array}$

 X_0 is a fixed point of \mathcal{U}_2 .

Conditions on subkeys used in \mathcal{K}_2 .

Definition: A key is called weak if the encryption function has 2^{32} fixed points in the middle step.

Detecting Weak Keys

- Fixed points occur with probability $\frac{2^{32}}{2^{64}} = 2^{-32}$.
- For a fixed point

 $plaintext \oplus initW = X_8 = ciphertext \oplus finalW$

 $initW \oplus finalW = plaintext \oplus ciphertext$

- For 2^{34} known plaintexts, calculate plaintext \oplus ciphertext.
 - on average 4 fixed points occur, giving $initW \oplus finalW$.
 - random 64 bit values for non-fixed points.

Detect weak keys by looking at "plaintext ciphertext."

First Attack

- Detecting a weak key gives $P_1 \oplus P_{18}$ and $P_2 \oplus P_{17}$ for free.
- Conditions on subkeys of \mathcal{K}_2 dictate $P_3 = P_{16}$, $P_4 = P_{15}$, $P_5 = P_{14}$, $P_6 = P_{13}$, $P_7 = P_{12}$, $P_8 = P_{11}$ and $P_9 = P_{10}$. (Hence, expected number of weak keys : $2^{k-7*32} = 2^{k-224}$)
- 9 equations in 18 variables.
- Guess 9 variables, determine remaining 9 variables. $2^{9*32} = 2^{288}$ guesses total.
- Check if a guess is valid by 9 encryptions. 9 * 2²⁸⁸ encryptions
 ≈ 2^{282.1} exhaustive search steps. (1 Exhaustive search step is 512+9 encryptions.)

Second Attack

- Exhaustively search and store all weak keys, sorting them w.r.t. $(P_1 \oplus P_{18}, P_2 \oplus P_{17}).$
- Pre-computation costs $\approx 2^{k-7}$ exhaustive search steps.
- Weak keys occupy 2^{k-224} spaces in memory.
- Online phase costs $2^{\frac{k-224}{64}}$ exhaustive search steps.

Attacks On Weak Keys

For some attack working on weak keys,

- W workload of identification, w total number of weak keys.
- Given a set of $\frac{2^k}{w}$ keys, expect one weak key on average,
- Run identification on the set, with complexity $W\frac{2^k}{w}$.
- Successful attack requires $W \frac{2^k}{w} < 2^k$, i.e. W < w.

Thanks.