Algebraic Immunity of S-boxes and Augmented Functions

Simon Fischer and Willi Meier

1 Algebraic Properties of S-boxes

Augmented Functions

3

Application 1: Filter Generators

4

Application 2: Trivium

Part 1 Algebraic Properties of S-boxes

Notation: F denotes GF(2), and S is the S-box

$$S: F^n \to F^m$$

Input $x = (x_1, \ldots, x_n)$, output $y = (y_1, \ldots, y_m)$, and S(x) = y.

Scenario: y is known, recover x with algebraic equations.

Use equations conditioned by some fixed y: **conditional equations** (CE). These are equations in x, which holds for all preimages of some y. Can find optimal equation (minimum degree) for each y (Armknecht).

Use matrix approach to find CE's (Courtois).

Example: S-box with n = 3, assume some output y with preimages x = 100, 110, 011, 001. Find linear CE.

$$M = \begin{array}{c|ccccccc} 1 & x_1 & x_2 & x_3 & \text{preimages} \\ \hline \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \end{pmatrix} & \begin{array}{c} x = 100 \\ x = 110 \\ x = 011 \\ x = 001 \end{array}$$

Solution: $0 = 1 + x_1 + x_3$ holds for each preimage.

Use matrix approach to find CE's (Courtois).

Example: S-box with n = 3, assume some output y with preimages x = 100, 110, 011, 001. Find linear CE.

Solution: $0 = 1 + x_1 + x_3$ holds for each preimage.

Number of preimages: 2^{n-m} for balanced S-box.

Number of monomials: $D = \sum_{i=0}^{d} {n \choose i}$ for degree d.

Matrix M has 2^{n-m} rows, and D columns.

Number of CE's corresponds to the dimension of solution space of M.

Sufficient condition for existence of CE: $2^{n-m} < D$. If *m* is parameter: $m > m_0$ with $m_0 := n - \log_2 D$.

Weak output: CE exists though $m \ll m_0$.

Can find CE's by setting up and solving M. Bottleneck: finding all preimages takes 2^n steps.

Probabilistic algorithm:

- A random preimage can be found in 2^m .
- Solve smaller matrix M with a few random preimages.
- If CE exists, it holds only for fraction p of all 2^{n-m} preimages.
- With about D random preimages, p will be very large.

Complexity is $2^m D + D^3$.

Probabilistic algorithm is efficient for weak outputs.

Part 2 Augmented Functions

Stream cipher with update function L, output function f. Update L is linear (e.g. in LFSR) or nonlinear (e.g. in Trivium).

S-box in context of stream cipher: augmented function (AF).

$$S_m : F^n \to F^m$$
$$x \mapsto (f(x), f(L(x)), \dots, f(L^{m-1}(x)))$$

Use probabilistic algorithm to find CE's for AF, recover x.

Block size:

m is a natural parameter for augmented function S_m .

Finding preimages:

In 2^m for random S-box. AF can have simple structure. Sampling methods in TMTO attacks (Biryukov-Shamir).

New algebraic attacks on AF, if:

- **(**) AF has many weak outputs (low-degree CE's for $m \ll m_0$).
- **②** Finding preimages is feasible (for output size m).

Part 3 Application: Filter Generators LFSR of n bits, and Boolean function f.

Algebraic Attacks:

- f has algebraic immunity e, linearisation requires $\binom{n}{e}$ data.
- Gröbner bases need only about *n* bit data in few cases (experimental results by Faugère-Ars).

Understand such behavior with augmented function.

Experiments:

Consider CanFil family (as in Faugère-Ars) and Majority function. State of size n = 20, find linear equations where $m_0 = 16$.

Step 1: Existence of exact equations (by computing all preimages)

Example

n = 20, fixed setup, CanFil5 = $x_1 + x_2x_3 + x_2x_3x_4x_5$. Output y = 000000 of m = 6 bits. There are 2^{14} preimages, and D = 21 monomials in matrix M. M has rank 20, one linear equation exists.

The output y = 000000 seems very weak. What about other outputs? What about other setups and functions?

Exact Equations

For n = 20, record overall number of equations (for all y):

Filter	m	Different setups				
CanFil1	14	0	0	0	0	0
	15	3139	4211	3071	4601	3844
CanFil2	14	0	0	0	0	0
	15	2136	2901	2717	2702	2456
CanFil5	6	0	0	0	2	0
	7	0	0	0	8	0
	8	0	0	0	24	0
	9	0	0	0	64	0
	10	6	0	0	163	0
	11	113	0	2	476	0
	12	960	16	215	1678	29
Majority5	9	0	0	0	2	0
	10	1	10	1	18	1
	11	22	437	40	148	56

Linear equations exist only for m about m_0 .

Linear equations exist already for m about n/2.

Observation 1: Number of equations mainly depends on filter function. **Observation 2**: Experimental results are scalable with n. Try to find equations with the probabilistic algorithm.

Step 2: Probabilistic equations (by computing a few random preimages)

Example

n = 20, fixed setup, CanFil5, y = 000000 of m = 6 bits. Pick instead of all 2^{14} preimages only N = 80 random preimages, D = 21. Determine all solutions for much smaller matrix M. Obtained always 2 to 4 solutions, with probability $p = 0.98, \ldots, 1$.

Probability impressively large \rightarrow probabilistic equations useful in attacks.

Step 3: Sampling (efficient computation of random preimages)

Filter inversion:

Fix k inputs of filter which give correct observed output bit. Repeat for about n/k output bits, until state is unique. Complexity $2^{m-n/k}$ to find one preimage, efficient if k is small.

Linear sampling:

Impose linear conditions on input variables, so that f becomes linear. Solve linear system to find one preimage.

With sampling, can find equations for quite large n. Example with CanFil5, n = 80, m = 40. Linear equation in 2^{32} for some y. Each new low degree equation (found by investigating AF) can serve to reduce data complexity of algebraic attacks.

Have identified functions f which show **resistance** to this approach: Equations exist only for large m, effort of finding preimages is too large.

Several other functions f shown to be **weak**: Many low degree equations can be determined efficiently.

In some cases, data complexity can be of order n: Observe n weak outputs and set up n linear equations.

Part 4 Application: Trivium

State of n = 288 bits, nonlinear update, linear output of one bit.

Consider AF with n input bits and m consecutive output bits. Use our framework, but how to find preimages for such a large state?

Sampling:

In first 66 clocks, each keystream bit is linear in initial state bits. Finding preimages for m = 66 obvious.

For larger m, use linear sampling:

Fix even bits of state, get linear relations in remaining variables. Can find preimages efficiently for m = n/2 = 144 or larger.

Are there additional linear equations beyond the 66 known ones?

Example

Consider AF of Trivium with m = 144. Choose random output y and find N = 400 preimages. Set up and solve matrix M with N preimages and D = 289 monomials.

Result: For different y, get always 66 linear equations.

Can go further: Determine preimages for m = 150 with partial search. Still find 66 linear equations for a 150 bit output of consecutive 0's.

Trivium seems resistant against additional linear equations in AF.

Conclusions

- The augmented function of a stream cipher should be checked for conditional equations of low degree.
- This requires computation of preimages, can be efficient in some cases.
- Schecking successful for a class of filter generators and for Trivium.
- Efficient algebraic attacks with lower data complexity on certain stream ciphers.

Provable resistance of practical stream ciphers against algebraic attacks looks even harder than believed.

Questions ?

