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Part 1
Algebraic Properties of S-boxes
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The S-box

Notation: F denotes GF(2), and S is the S-box

S : Fn → Fm

Input x = (x1, . . . , xn), output y = (y1, . . . , ym), and S(x) = y.

Scenario: y is known, recover x with algebraic equations.

Use equations conditioned by some fixed y: conditional equations (CE).
These are equations in x, which holds for all preimages of some y.
Can find optimal equation (minimum degree) for each y (Armknecht).
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How to Find Conditional Equations

Use matrix approach to find CE’s (Courtois).

Example: S-box with n = 3, assume some output y with preimages
x = 100, 110, 011, 001. Find linear CE.

M =

1 x1 x2 x3 preimages
1 1 0 0
1 1 1 0
1 0 1 1
1 0 0 1


x = 100
x = 110
x = 011
x = 001

Solution: 0 = 1 + x1 + x3 holds for each preimage.

S. Fischer and W. Meier AI of Sbox and AF 5 / 23



How to Find Conditional Equations

Use matrix approach to find CE’s (Courtois).

Example: S-box with n = 3, assume some output y with preimages
x = 100, 110, 011, 001. Find linear CE.

M =

1 x1 x2 x3 preimages
1 1 0 0
1 1 1 0
1 0 1 1
1 0 0 1


x = 100
x = 110
x = 011
x = 001

Solution: 0 = 1 + x1 + x3 holds for each preimage.

S. Fischer and W. Meier AI of Sbox and AF 5 / 23



Theoretical Background

Number of preimages: 2n−m for balanced S-box.

Number of monomials: D =
∑d

i=0

(
n
i

)
for degree d.

Matrix M has 2n−m rows, and D columns.

Number of CE’s corresponds to the dimension of solution space of M .

Sufficient condition for existence of CE: 2n−m < D.
If m is parameter: m > m0 with m0 := n− log2 D.

Weak output: CE exists though m� m0.
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Algorithmic Methods

Can find CE’s by setting up and solving M .
Bottleneck: finding all preimages takes 2n steps.

Probabilistic algorithm:

A random preimage can be found in 2m.

Solve smaller matrix M with a few random preimages.

If CE exists, it holds only for fraction p of all 2n−m preimages.

With about D random preimages, p will be very large.

Complexity is 2mD + D3.

Probabilistic algorithm is efficient for weak outputs.
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Part 2
Augmented Functions
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Situation

Stream cipher with update function L, output function f .
Update L is linear (e.g. in LFSR) or nonlinear (e.g. in Trivium).

S-box in context of stream cipher: augmented function (AF).

Sm : Fn → Fm

x 7→ (f(x), f(L(x)), . . . , f(Lm−1(x))
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New Scenarios of Algebraic Attacks

Use probabilistic algorithm to find CE’s for AF, recover x.

Block size:
m is a natural parameter for augmented function Sm.

Finding preimages:
In 2m for random S-box. AF can have simple structure.
Sampling methods in TMTO attacks (Biryukov-Shamir).

New algebraic attacks on AF, if:

1 AF has many weak outputs (low-degree CE’s for m� m0).

2 Finding preimages is feasible (for output size m).
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Part 3
Application: Filter Generators
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Situation

LFSR of n bits, and Boolean function f .

Algebraic Attacks:

f has algebraic immunity e, linearisation requires
(
n
e

)
data.

Gröbner bases need only about n bit data in few cases
(experimental results by Faugère-Ars).

Understand such behavior with augmented function.
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Existence of Equations

Experiments:
Consider CanFil family (as in Faugère-Ars) and Majority function.
State of size n = 20, find linear equations where m0 = 16.

Step 1: Existence of exact equations (by computing all preimages)

Example

n = 20, fixed setup, CanFil5 = x1 + x2x3 + x2x3x4x5.
Output y = 000000 of m = 6 bits.
There are 214 preimages, and D = 21 monomials in matrix M .
M has rank 20, one linear equation exists.

The output y = 000000 seems very weak. What about other outputs?
What about other setups and functions?
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Exact Equations

For n = 20, record overall number of equations (for all y):

Filter m Different setups

CanFil1 14 0 0 0 0 0
15 3139 4211 3071 4601 3844

CanFil2 14 0 0 0 0 0
15 2136 2901 2717 2702 2456

CanFil5 6 0 0 0 2 0
7 0 0 0 8 0
8 0 0 0 24 0
9 0 0 0 64 0

10 6 0 0 163 0
11 113 0 2 476 0
12 960 16 215 1678 29

Majority5 9 0 0 0 2 0
10 1 10 1 18 1
11 22 437 40 148 56

Linear equations exist only for
m about m0.

Linear equations exist already
for m about n/2.

Observation 1: Number of equations mainly depends on filter function.
Observation 2: Experimental results are scalable with n.
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Probabilistic Equations

Try to find equations with the probabilistic algorithm.

Step 2: Probabilistic equations (by computing a few random preimages)

Example

n = 20, fixed setup, CanFil5, y = 000000 of m = 6 bits.
Pick instead of all 214 preimages only N = 80 random preimages, D = 21.
Determine all solutions for much smaller matrix M .
Obtained always 2 to 4 solutions, with probability p = 0.98, . . . , 1.

Probability impressively large → probabilistic equations useful in attacks.
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Sampling

Step 3: Sampling (efficient computation of random preimages)

Filter inversion:
Fix k inputs of filter which give correct observed output bit.
Repeat for about n/k output bits, until state is unique.
Complexity 2m−n/k to find one preimage, efficient if k is small.

Linear sampling :
Impose linear conditions on input variables, so that f becomes linear.
Solve linear system to find one preimage.

With sampling, can find equations for quite large n.
Example with CanFil5, n = 80, m = 40. Linear equation in 232 for some y.
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Algebraic Attacks

Each new low degree equation (found by investigating AF) can serve to
reduce data complexity of algebraic attacks.

Have identified functions f which show resistance to this approach:
Equations exist only for large m, effort of finding preimages is too large.

Several other functions f shown to be weak:
Many low degree equations can be determined efficiently.

In some cases, data complexity can be of order n:
Observe n weak outputs and set up n linear equations.
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Part 4
Application: Trivium
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Sampling

State of n = 288 bits, nonlinear update, linear output of one bit.

Consider AF with n input bits and m consecutive output bits.
Use our framework, but how to find preimages for such a large state?

Sampling:
In first 66 clocks, each keystream bit is linear in initial state bits.
Finding preimages for m = 66 obvious.

For larger m, use linear sampling:
Fix even bits of state, get linear relations in remaining variables.
Can find preimages efficiently for m = n/2 = 144 or larger.
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Experimental Results

Are there additional linear equations beyond the 66 known ones?

Example

Consider AF of Trivium with m = 144.
Choose random output y and find N = 400 preimages.
Set up and solve matrix M with N preimages and D = 289 monomials.

Result: For different y, get always 66 linear equations.

Can go further: Determine preimages for m = 150 with partial search.
Still find 66 linear equations for a 150 bit output of consecutive 0’s.

Trivium seems resistant against additional linear equations in AF.
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Conclusions
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Conclusions

1 The augmented function of a stream cipher should be checked for
conditional equations of low degree.

2 This requires computation of preimages, can be efficient in some
cases.

3 Checking successful for a class of filter generators and for Trivium.

4 Efficient algebraic attacks with lower data complexity on certain
stream ciphers.

Provable resistance of practical stream ciphers against algebraic attacks
looks even harder than believed.
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Questions ?
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