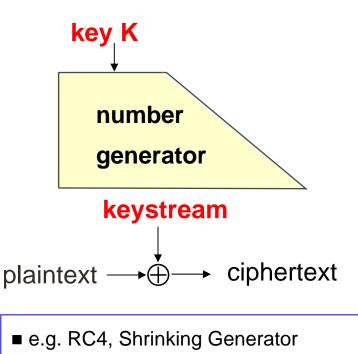
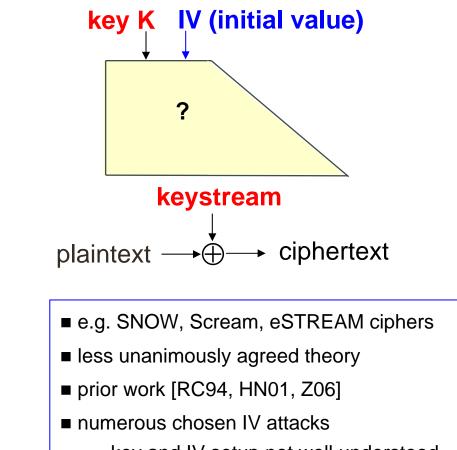
On the Security of IV Dependent Stream Ciphers

Côme Berbain and Henri Gilbert France Telecom R&D


{firstname.lastname@orange-ftgroup.com}


Stream Ciphers

IV-less

- well founded theory [S81,Y82,BM84]
- practical limitations:
 - no reuse of K
 - synchronisation

IV-dependent

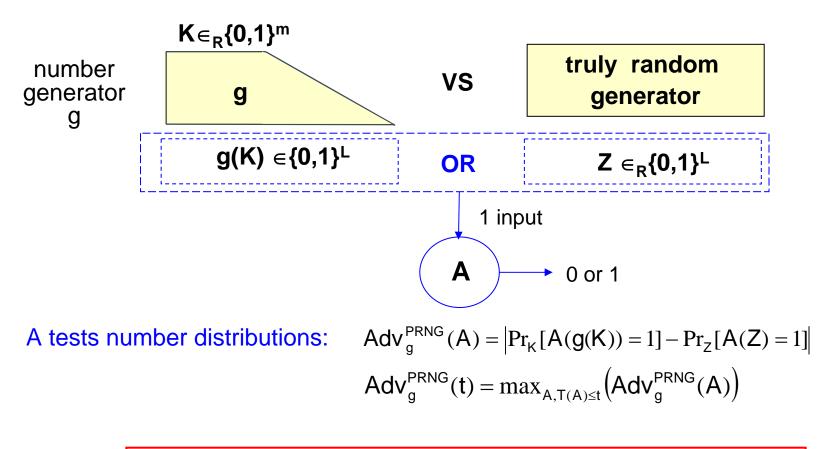
- key and IV setup not well understood

Outline

security requirements on IV-dependent stream ciphers

- whole cipher
- key and IV setup

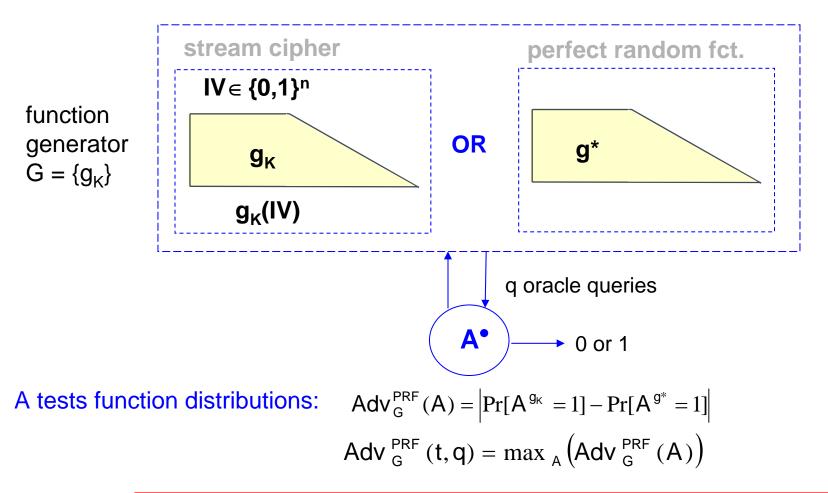
key and IV setup constructions satisfying these requirements


- blockcipher based
- tree based

application example: QUAD

incorporate key and IV setup in QUAD's provable security argument

Security in IV-less case: PRNG notion


g is a secure cipher \Leftrightarrow g is a PRNG \Leftrightarrow Adv^{PRNG}_g(t < 2⁸⁰) <<1

IV setup – H. Gilbert (4)

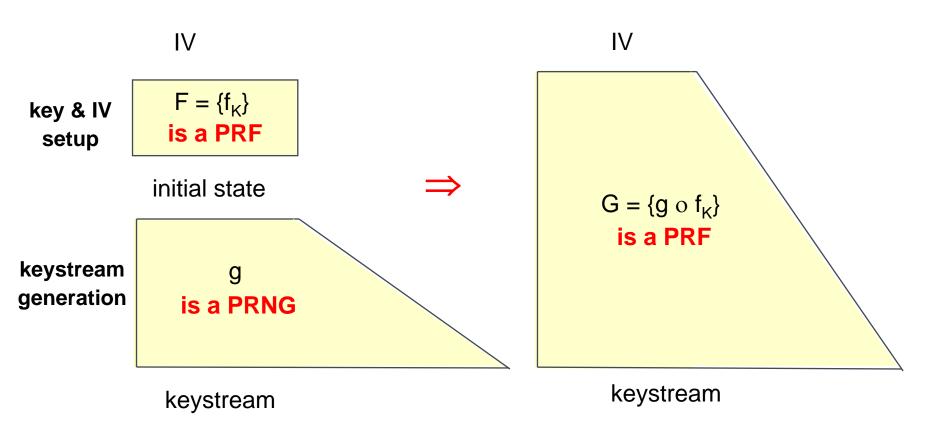
research & developement

Orange Group

Security in IV-dependent case: PRF notion

G is a secure cipher \Leftrightarrow G is a PRF \Leftrightarrow Adv $_{G}^{PRF}$ (t < 2⁸⁰, 2⁴⁰) << 1

Structure of the stream ciphers considered here



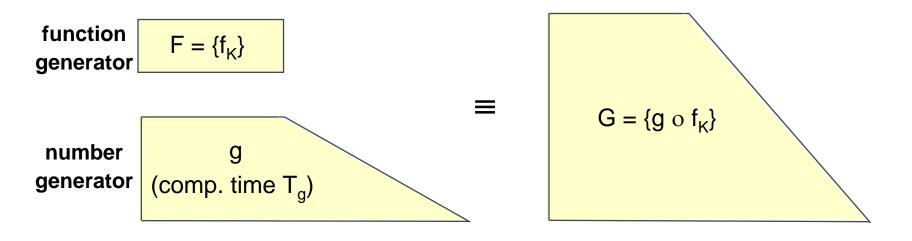
IV (n bits) key & IV setup initial state (m bits) keystream generation keystream (L bits)

keystream (L bits)

Security: sufficient conditions

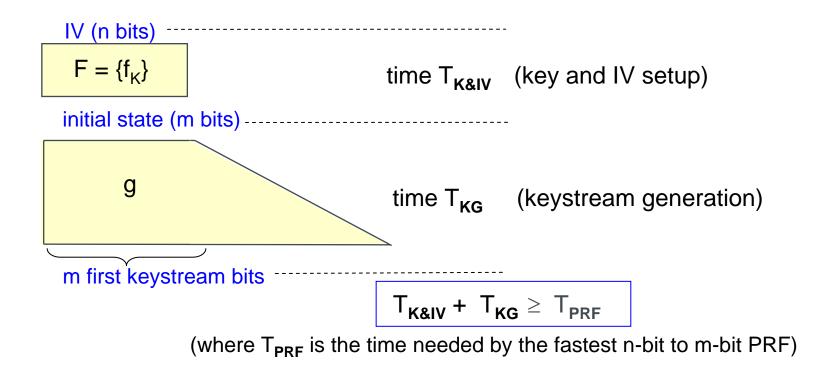
[informally]: the key & IV setup is a PRF and the keystream generator is a PRNG \Rightarrow the whole stream cipher is secure

IV setup – H. Gilbert (7)


research & developement

Orange Group

This is due to a simple composition theorem



Composition Theorem: $Adv_{G}^{PRF}(t,q) \le Adv_{F}^{PRF}(t',q) + qAdv_{g}^{PRNG}(t')$ where $t' = t + qT_{g}$

For a fast cipher, T_{KG} is small, so $T_{K\&IV}$ cannot be much lower than T_{PRF}

Key & IV setup: candidate PRF constructions

Block cipher based (not detailed here)

Examples: LEX (based on AES), Sosemanuk (based on Serpent)

Pros: more conservative than many existing constructions

Cons: heterogeneous construction \Rightarrow increased implementation complexity (except for LEX)

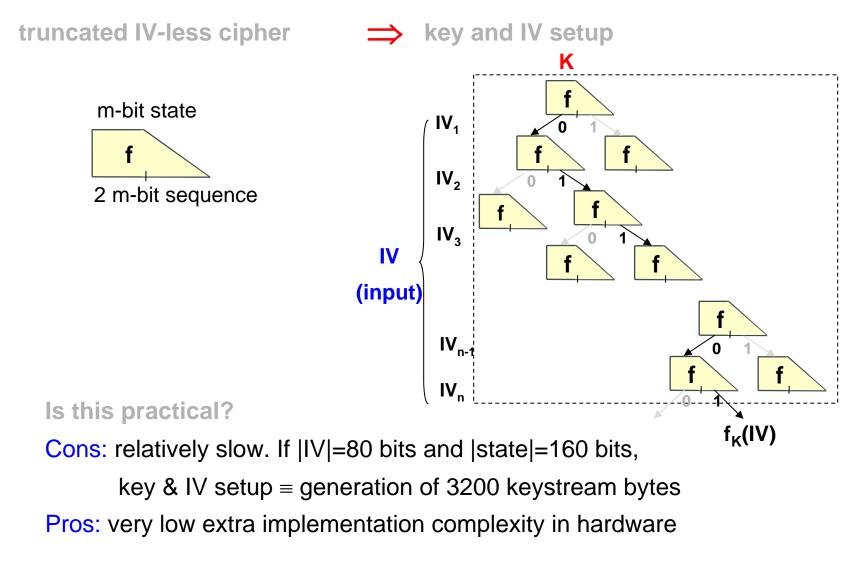
Tree based (detailed in the sequel)

Example: QUAD

Conducting idea: re-use essentially the same PRNG as in the keystream generation

Pros: low implementation complexity Cons: relatively slow

Tree based construction [GGM86]

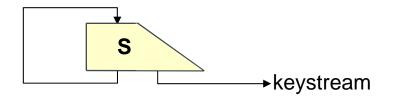


n-bit to m-bit PRF $F = {f_v}$ m-bit to 2m-bit PRNG f \Rightarrow y (parameter) (m bits) $\mathbf{x}_{1} = 0$ 0 $x_2 = 1$ (2m bits) f $X_3 = 1$ 0 Χ (input) $x_{n-1} = 0$ 0 Xn = $\mathbf{\lambda}$ M f_y(x) $Adv_{F}^{PRF}(t,q) \le nqAdv_{f}^{PRNG}(t')$ Theorem[≈GGM86]: where $t' = t + q(n+1)T_f$

IV setup – H. Gilbert (11)

Tree based key & IV setup

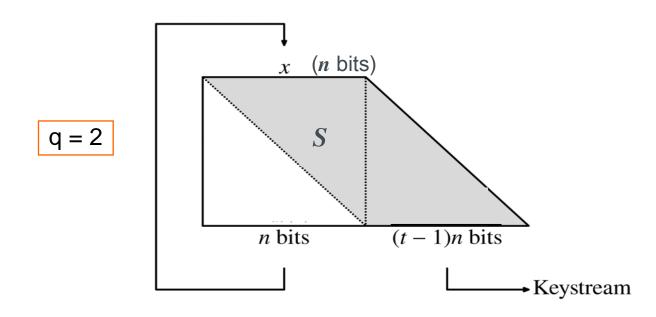
The Stream Cipher QUAD [BGP06]


Based on the multivariate quadratic problem (MQ)

Given a system of m quadratic equations in n variables over GF(q)

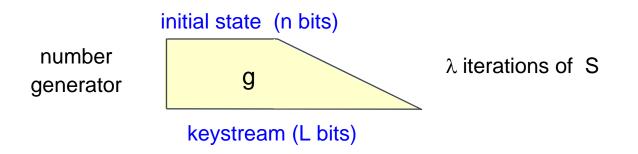
$$Q_{k}(x_{1},...,x_{n}) = \sum_{i \leq j} \alpha_{i,j}^{k} x_{i} x_{j} + \sum_{i} \beta_{i}^{k} x_{i} + \gamma^{k} = y_{k}, k = 1,...,m$$

Find a solution $\mathbf{x} = (\mathbf{x}_1, ..., \mathbf{x}_n) \in GF(q)^n$ (if any)


- NP hard even over GF(2)
- best solving algorithms so far are exponential [Faugère, Bardet]
- QUAD iterates a fixed quadratic function S

QUAD: keystream generation

- internal state: $\mathbf{X} = (\mathbf{X}_1, ..., \mathbf{X}_n) \in GF(q)^n$
- fixed public quadratic function S: n var., m = tn eq. (typically 2n eq.)

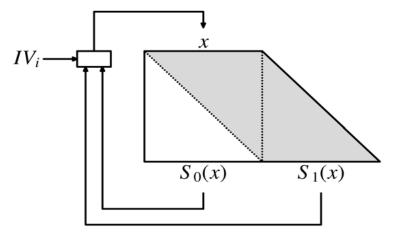


recommended parameters: q=2, n=160 bits, t=2

Security argument for the keystream generation

Keystream generation, GF(2) case

- Th [BGP06]: in the GF(2) case, if there exists a distinguisher for g allowing to distinguish a sequence of $L = \lambda(t-1)n$ keystream bits associated with a random quadratic systems *S* and a random initial state value x in time *T* with advantage ε , then there is an MQ solver that solves a random instance of MQ in time $T' \cong O(\frac{n^2 \lambda^2 T}{\varepsilon^2})$ with probability $\varepsilon' = \frac{\varepsilon}{2^2 \lambda}$.
- **Example of application:** q=2, n = 350 bits, t = 2, L= 2^{40} , T= 2^{80} , ε = 1%

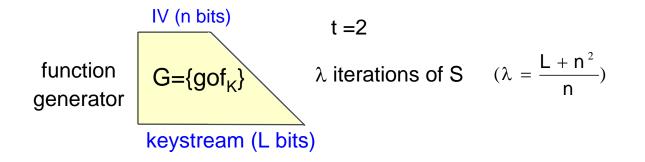

(no such concrete reduction for the recommend value n = 160)

IV setup – H. Gilbert (15)

QUAD: Key and IV Setup

• uses two public quadratic functions S_0 and S_1 of n eq. in n var. each

set x with the key K)	
for each IV bit IV _i :		
• if $IV_i = 0$ then update x with $S_0(x)$	$\left.\right\}$	tree based construction
• if $IV_i = 1$ then update x with $S_1(x)$		


runup: clock the cipher *n* times without outputting the keystream typical key and IV lengths: 160 bits each

IV setup – H. Gilbert (16)

Extending the proof to the whole cipher

Whole cipher, **GF(2)** case

- Th: in the GF(2) case, if there exists a (T,q) PRF-distinguisher for the family G of IV to keystream functions associated with a random key and a random quadratic systems S with PRF-advantage ε , then there is an MQ solver that solves a random instance of MQ in time $T' \cong O(\frac{n^2 \lambda^2 q^2 T}{\varepsilon^2})$ with probability at least $\varepsilon' = \frac{\varepsilon}{3.2^3 q \lambda}$.
- **Example of application:** q=2, n = 760 bits, t = 2, L= 2^{40} , T= 2^{80} , ε = 1%

Conclusions

- **Requirements:** a PRF is needed
- Conservative IV setup
 - seems demanding w.r.t. computational complexity
 - is not demanding w.r.t. implementation complexity
- Provable security" can be extended to IV-dependent stream ciphers