New Message Difference for MD4

Yu Sasaki, Lei Wang, Kazuo Ohta and Noboru Kunihiro
The University of Electro-Communications 28/March/2007 @ FSE 2007

Introduction of MD4

Input
Arbitrary length data

Hash Function

Output
Defined length data
a MD4 is a 128 -bit hash function.
« Many hash functions such as MD5 and SHA-1, are designed based on MD4.
a Cryptanalysis of MD4 is important.

Collision Attack is Important !!

${ }^{4}$ Collision attack means finding (M, M') such that $\operatorname{Hash}(\mathrm{M})=\operatorname{Hash}\left(\mathrm{M}^{\prime}\right), \mathrm{M} \neq \mathrm{M}^{\prime}$.

4 Collision can threaten some applications. forging certificate, forging signature, key recovery on NMAC/HMAC password recovery on APOP, and so on.

Message Difference for Various Improved Collision Attack

a In 2005, Wang et al. proposed efficient collision attack. (less than $2^{8} \mathrm{MD} 4$)
${ }^{4}$ Naito et al. improved the complexity. (less than 3 MD4)
4 Shulåffer and Oswald proposed automated sufficient condition search algorithm.

Common Fact

All previous known attacks use the same message difference as Wang et al.'

Our Result

a We propose new message difference and new local collision that are the best for collision attack on MD4.
a Our attack generates a collision with less than 2 MD4 computations.

Generating collision is faster

 than checking collision!!
Procedure of Collision Attack

Attack Procedure

1. Local Collision in $3^{\text {rd }}$ round. Insert some difference in $3^{\text {rd }}$ round and cancel it in few steps.
2. $\Delta \mathrm{M}$

Core Technique
Insert message difference to realize local collision.
3. Differential Path

Analyze how $\Delta \mathrm{M}$ propagates.
4. Chaining Variable Condition

Make Conditions of chaining variables to hold differential path.
5. Collision Search

By using message modification, search a message satisfying all conditions.

Constructing the Best Local Collision

1. Study of Wang et al.'s local collision
2. Analyze why it is not the best
3. Construct the best local collision

Structure of MD4

i step

Structure of MD4

MD4 has 48 steps.
$\lll S_{i}$: Left Rotation
f: Boolean Function (XOR is considered for Local Collision)

Wang et al's Local Collision 1/6

i step

1. Make diff with 2^{j-1} of $\mathrm{m}_{\mathrm{i}-1}$.

Wang et al's Local Collision 2/6

i+1 step

1. Make diff with $2^{j-s 1}$ of $\mathrm{m}_{\mathrm{i}-1}$.
2. Cancel diff with 2^{j} of m_{i}. Make diff with $2^{j-s 2}$ of m_{i}.

Wang et al's Local Collision 3/6

i+2 step

1. Make diff with $2^{j-s 1}$ of $\mathrm{m}_{\mathrm{i}-1}$.
2. Cancel diff with 2^{j} of m_{i}. Make diff with $2^{\mathrm{j}-\mathrm{s} 2}$ of m_{i}.
3. No difference

Wang et al's Local Collision 4/6

i+3 step

1. Make diff with $2^{j-s 1}$ of $\mathrm{m}_{\mathrm{i}-1}$.
2. Cancel diff with 2^{j} of m_{i}. Make diff with $2^{\mathrm{j}-\mathrm{s} 2}$ of m_{i}.
3. No difference
4. No difference

Wang et al's Local Collision 5/6

i+4 step

1. Make diff with $2^{j-s 1}$ of $\mathrm{m}_{\mathrm{i}-1}$.
2. Cancel diff with 2^{j} of m_{i}. Make diff with $2^{\mathrm{j}-\mathrm{s} 2}$ of m_{i}.
3. No difference
4. No difference
5. No difference

Wang et al's Local Collision 6/6

i+5 step

1. Make diff with $2^{j-s 1}$ of $\mathrm{m}_{\mathrm{i}-1}$.
2. Cancel diff with 2^{j} of m_{i}. Make diff with $2^{j-s 2}$ of m_{i}.
3. No difference
4. No difference
5. No difference
6. Cancel diff with 2^{j} of m_{i+4}.

All differences are cancelled !!

Summary of Wang et al.'s LC

1. Make diff with $2^{\mathrm{j}-\mathrm{s} 1}$ of $\mathrm{m}_{\mathrm{i}-1}$
2. Cancel diff with 2^{j} of m_{i}. Make diff with $2^{j \text {-s } 2}$ of m_{i}.
3. No difference
4. No difference
5. No difference
6. Cancel diff with 2^{j} of $\mathrm{m}_{\mathrm{i}+4}$.

If $j=M S B$, cancellation succeeds with probability 1.

When we make diff at MSB, we will fail with $1 / 2$.
Proof: next page

Therefore, total success probability is $1 / 4$.

The Best Local Collision

- Wang et al.'s LC makes two differences in MSB.

Success prob of LC : $\mathbf{1 / 4}$

- At least 1 difference is necessary.
- If LC that consists of 1 difference in MSB exists, such LC is the best.

Success prob is $\mathbf{1 / 2}$

New Local Collision 1/5

i step

1. Make diff with $2^{j-s 1}$ of $\mathrm{m}_{\mathrm{i}-1}$.

New Local Collision 2/5

New Local Collision 3/5

i+2 step
2^{j}

1. Make diff with $2^{j-s 1}$ of $\mathrm{m}_{\mathrm{i}-1}$.
2. Cancel diff with 2^{j} of m_{i}.
3. Cancel diff with 2^{j} of $\mathrm{m}_{\mathrm{i}+1}$.

New Local Collision 4/5

i+3 step

1. Make diff with $2^{j-s 1}$ of $\mathrm{m}_{\mathrm{i}-1}$.
2. Cancel diff with 2^{j} of m_{i}.
3. Cancel diff with 2^{j} of $\mathrm{m}_{\mathrm{i}+1}$.
4. Cancel diff with 2^{j} of $\mathrm{m}_{\mathrm{i}+2}$.

New Local Collision 5/5

i+4 step

1. Make diff with $2^{j-s 1}$ of $\mathrm{m}_{\mathrm{i}-1}$.
2. Cancel diff with 2^{j} of m_{i}.
3. Cancel diff with 2^{j} of $\mathrm{m}_{\mathrm{i}+1}$.
4. Cancel diff with 2^{j} of m_{i+2}.
5. Cancel diff with 2^{j} of $\mathrm{m}_{\mathrm{i}+3}$.

All differences are cancelled !!

Comparison of Both Local Collisions

Analysis of Message Expansion

Which step we apply LC?

New local collision

1. Make diff with $2^{\mathrm{j}-\mathrm{s} 1}$ of $\mathrm{m}_{\mathrm{i}-1}$.
2. Cancel diff with 2^{j} of m_{i}.
3. Cancel diff with 2^{j} of m_{i+1}.
4. Cancel diff with 2^{j} of $\mathrm{m}_{\mathrm{i}+2}$.
5. Cancel diff with 2^{j} of $\mathrm{m}_{\mathrm{i}+3}$.

There are 12 patterns.

| step | Index of
 message | |
| :---: | :---: | :--- | :--- |

Criteria for Good Msg Expansion

Criteria

Last difference in 2 R round should be as early as possible.

In this example: 25

	2R	
	step	message
Some diff	17	0
	18	4
	19	8
	20	12
	21	1
	22	5
	23	9
		13
		2
	26	6
	27	10
	28	14
	29	3
	30	7
		11
	32	15

step	message
33	0
34	8
35	4
36	12
37	2
38	10
39	6
40	14
41	1
42	9
43	5
44	13
45	3
46	11
47	7
48	15

Comparison of \#CVC in each method

We made differential path in 2 R to minimize conditions.
Comparison of \#non-negligible conditions

	Wang	Schlåffer	Leurent	New LC
Round 1	96	122	70	$? ? ?$
Round 2	25	22	16	$\mathbf{9}$
Round 3	2	2	2	$\mathbf{1}$

Remaining work is construction of path in the 1 R .

5

Differential Path Construction Algorithm for the $1^{\text {st }}$ round

Differential Path Search Algorithm

More advantages than previous work.

Forward Search Backward Search

Step 1	Step 5	Step 9	Step 13
Step 2	Step 6	Step 10	Step 14
Step 3	Step 7	Step 11	Step 15
Step 4	Step 8	Step 12	Step 16

Backward Search

1. Calculate the difference before rotation.
2. There are 4 candidates to produce this diff.

Previous work [SO06] did not consider path through f.

We enlarged search space!!

\#CVC: Final Result

Table: Comparison of \#CVC in each method

	Wang	Schlåffer	Leurent	New LC
Round 1	96	122	70	167
Round 2	25	22	16	9
Round 3	2	2	2	1

Note: All CVCs in 1R are satisfied with probability 1.

Attack Complexity

${ }^{4}$ We also proposed message modification for out attack.

4 Complexity of our attack
\longrightarrow Less than 2 MD4 computations

Conclusion

\& We proposed the best local collision and message difference for MD4 collision attack.
\& We proposed algorithm for constructing differential path for 1 R of MD4.
${ }^{4}$ By combining message modification, our attack generates a collision with complexity less than 2 MD4 computations, which is the fastest of all previous known works.
$\Delta M=\left\{\begin{array}{l}\Delta \mathrm{m}_{0}=2^{28} \quad \Delta \mathrm{~m}_{2}=2^{31} \quad \Delta \mathrm{~m}_{4}=2^{31} \quad \Delta \mathrm{~m}_{8}=2^{31} \quad \Delta \mathrm{~m}_{12}=2^{31} \\ \Delta \mathrm{~m}_{\mathrm{i}}=0 \text { (for other } \mathrm{i} \text {) }\end{array}\right.$

M	bcdd2674 f45be728 ed03bf75 a5f5eff1	53fce1ed acc992cc c6aedc45 fb2ee79b	25d202ce 6acfb3ea d442b710 0f590d68	e87d102e 7dbb29d4 fca27d99 4989f380
M^{\prime}	ccdd2674 745be728 6d03bf75 25f5eff1	53fce1ed acc992cc c6aedc45 fb2ee79b	a5d202ce 6acfb3ea d442b710 0f590d68	e87d102e 7dbb29d4 fca27d99 $4989 f 380$
hash	c257b7be	324f26ef	69d3d290	b01be001

Thank you for your Attention !!!

