Two General Attacks on Pomaranch-like Keystream Generators.

H. Englund, M. Hell and T. Johansson

Department of Electrical and Information Technology Lund University, Sweden

Outline

- 2 Attack I: Linear Distinguisher
- 3 Attack II: Square Root IV Attack
- 4 Results and Conclusions

Outline

- 2 Attack I: Linear Distinguisher
 - 3 Attack II: Square Root IV Attack
- 4 Results and Conclusions

Attack I: Linear Distinguisher Attack II: Square Root IV Attack Results and Conclusions

Outline

1 Description of Pomaranch

- 2 Attack I: Linear Distinguisher
- 3 Attack II: Square Root IV Attack

Attack I: Linear Distinguisher Attack II: Square Root IV Attack Results and Conclusions

Outline

1 Description of Pomaranch

- 2 Attack I: Linear Distinguisher
- 3 Attack II: Square Root IV Attack
- **Results and Conclusions** 4

Jump Registers

Jump Registers

1011

 $0101 \leftarrow 1111 \leftarrow 0110 \leftarrow 1110$

1010

Jump Registers

1011

 $0101 \leftarrow 1111 \leftarrow 0110 \leftarrow 1110$

1010

Jump Registers

Jump Registers

Description of Pomaranch

- n jump registers JR_1, \ldots, JR_n of length L.
- Jump sequence j_2, \ldots, j_n used to clock jump registers.
- KeyMap, key-dependent function, $f : \mathbb{F}_2^9 \mapsto \mathbb{F}_2$.
- Filter function H.

Different Designs

- 5 different proposals for Pomaranch ciphers.
- 3 different design ideas:
 - Same jump register, linear filter function.
 - ② Different jump registers, linear filter function.
 - Oifferent jump registers, non-linear filter function.

Fundamental Ideas

Design Idea 1: Linear H, same registers Design Idea 2: Linear H, Different Registers Design Idea 3: Nonlinear H, Different Registers

Period of Jump Registers

- Period of JR_1 is denoted T_1 , $T_1 = 2^L 1$.
- Period for register JR_p is $T_p = T_1^p \approx 2^{pL}$.

Hence

$$x_i(t) = x_i(t + T_1^i), \ 1 \le i \le p.$$

• Useful for p such that $T_1^p < 2^{|K|}, \ |K| = {\rm Key \ size}.$

Fundamental Ideas Design Idea 1: Linear *H*, same registers Design Idea 2: Linear *H*, Different Registers Design Idea 3: Nonlinear *H*, Different Registers

Period of Jump Registers

Take samples at time t and $t + T_1^p$:

$$z(t)+z(t+T_1^p) = H(x_1(t),\ldots,x_n(t)) + H(x_1(t+T_1^p),\ldots,x_n(t+T_1^p)).$$

• Linear *H*:

$$z(t) + z(t + T_1^p) = \sum_{i=p+1}^n x_i(t) + x_i(t + T_1^p).$$

Non-linear H: H(t) and H(t + T^p₁) have p inputs x₁,..., x_p in common, 0 ≤ p ≤ n.

$$\Pr(z(t) + z(t + T_i^p) = 0) = \frac{1}{2}(1 - \delta), \ -1 \le \delta \le 1.$$

Fundamental Ideas

Design Idea 1: Linear H, same registers Design Idea 2: Linear H, Different Registers Design Idea 3: Nonlinear H, Different Registers

Linear Approximation of JR_{p+1}, \ldots, JR_n

For $JR_l, \ p+1 \leq l \leq n$, search for a set $\mathcal A$ of size w such that

$$\Pr(\sum_{i \in \mathcal{A}} x_l(t+i) = 0) = \frac{1}{2}(1-\varepsilon), \quad -1 \le \varepsilon \le 1,$$

Fundamental Ideas Design Idea 1: Linear H, same registers Design Idea 2: Linear H, Different Registers Design Idea 3: Nonlinear H, Different Registers

Design Idea 1: Linear H, same registers

- Linear approximation of one register, (applies to all registers);
- Samples at time t and $t + T_1^p$.

$$\sum_{i \in \mathcal{A}} z(t+i) + z(t+i+T_1^p) =$$
$$= \sum_{j=p+1}^n \sum_{i \in \mathcal{A}} (x_j(t+i) + x_j(t+i+T_1^p)).$$

• Bias of $\sum_{i\in\mathcal{A}} x_i(t+i)$ is $\varepsilon,$ we have 2(n-p) such relations

$$\varepsilon_{tot} = \varepsilon^{2(n-p)}$$

• $1/\varepsilon_{tot}^2$ samples needed to distinguish the cipher from a truly random source.

H. Englund, M. Hell and T. Johansson Two General Attacks on Pomaranch-like Keystream Generators

Fundamental Ideas Design Idea 1: Linear H, same registers Design Idea 2: Linear H, Different Registers Design Idea 3: Nonlinear H, Different Registers

Design Idea 1: Linear H, same registers

Theorem

The computational complexity and the number N of keystream bits needed to reliably distinguish the Pomaranch family of stream ciphers using a linear filter function and n jump registers of the same type is upper bounded by

$$N \le T_1^p + \frac{1}{\varepsilon^{4(n-p)}}, \quad p > 0,$$

where ε is the bias of the best linear approximation of the jump register.

- Pomaranch v1 (128 bit): Keystream and Complexity= 2^{71} .
- Pomaranch v2 (80 bit): Keystream and Complexity= 2^{56} . (128 bit): Keystream and Complexity= 2^{77} .

Fundamental Ideas Design Idea 1: Linear *H*, same registers Design Idea 2: Linear *H*, Different Registers Design Idea 3: Nonlinear *H*, Different Registers

Design Idea 2: Linear *H*, Different Registers

- Samples at time t and $t + T_1^p$.
- Linear approximation for all registers jointly.
- Bias for the approximation of register i is $\varepsilon_i,$ total bias is given by

$$\varepsilon_{tot} = \prod_{i=p+1}^{n} \varepsilon_i^2$$

Fundamental Ideas Design Idea 1: Linear *H*, same registers Design Idea 2: Linear *H*, Different Registers Design Idea 3: Nonlinear *H*, Different Registers

Design Idea 2: Linear H, Different Registers

Theorem

Assuming there is a linear relation that is biased in all registers. The computational complexity and the number N of keystream bits needed to reliably distinguish the Pomaranch family of stream ciphers using a linear filter function and n jump registers of different types is upper bounded by

$$N \le T_1^p + \frac{1}{\prod_{i=p+1}^n \varepsilon_i^4}, \quad p > 0,$$

where ε_i is the bias of jump register JR_i .

 Pomaranch v3 (128 bit): Keystream and Complexity=2¹²⁶. (Without frame length restriction)

H. Englund, M. Hell and T. Johansson

Two General Attacks on Pomaranch-like Keystream Generators

Fundamental Ideas Design Idea 1: Linear *H*, same registers Design Idea 2: Linear *H*, Different Registers Design Idea 3: Nonlinear *H*, Different Registers

Design Idea 3: Nonlinear H, Different Registers

• Consider the case, (can easily be extended), when the filter function *H* can be written on the form

$$H(x_1,\ldots,x_n)=G(x_1,\ldots,x_{n-1})+x_n.$$

• G(t) and $G(t+T_1^p)$ have p inputs x_1,\ldots,x_p in common,

$$\Pr\left(z(t) + z(t + T_i^p) = 0\right) = \frac{1}{2}(1 - \delta), \ -1 \le \delta \le 1.$$

• Find linear approximation for JR_n .

Fundamental Ideas Design Idea 1: Linear *H*, same registers Design Idea 2: Linear *H*, Different Registers Design Idea 3: Nonlinear *H*, Different Registers

Design Idea 3: Nonlinear H, Different Registers

$$H(x_1, \dots, x_n) = G(x_1, \dots, x_{n-1}) + x_n.$$
 (1)

Theorem

The computational complexity and the number N of keystream bits needed to reliably distinguish the Pomaranch family of stream ciphers using a filter function of the form (1) is upper bounded by

$$N \le T_1^p + \frac{1}{(\varepsilon^2 \delta^w)^2}.$$

where ε is the a biased approximation of weight w of register JR_n and δ is the bias of $G(x_1(t), \dots, x_{n-1}(t)) + G(x_1(t+T_1^p), \dots, x_{n-1}(t+T_i^p)).$

• Pomaranch v3 (80 bit): Keystream and Complexity=2⁷¹.

H. Englund, M. Hell and T. Johansson

Two General Attacks on Pomaranch-like Keystream Generators

Attack II: Square Root Resynchronization Attack

• Divide the internal state into two parts,

$$State = (State_K, State_{K+IV}).$$

 $State_K$ only holds the key.

 $State_{K+IV}$ depends on both key and IV.

- If key size $|K| > |State_{K+IV}|/2$, attack succeeds with complexity below exhaustive key search.
- One attack scenario:
 - Fixed key.
 - One long keystream sequence from one IV.
 - Intercept ciphertexts from many IVs, knowing *l* plaintext bits of every ciphertext.
 - Goal is to recover more of the plaintext for one message.

Square Root Resynchronization Attack on Pomaranch Attack Complexities

Square Root Resynchronization Attack on Pomaranch

• KeyMap, is key dependent but independent of IV.

Square Root Resynchronization Attack on Pomaranch Attack Complexities

Square Root Resynchronization Attack on Pomaranch

- Samples taken as, S(t) = (z(t), z(t+1), ..., z(t+nL-1)).
- Fixed key defines state graph of size $(2^L 1)^n \approx 2^{nL}$.
- Store large amount of samples from IV_0 in table.
- Find IV_c , such that $S_{IV_c}(t_c) = S_{IV_0}(t_0)$.

Square Root Resynchronization Attack on Pomaranch Attack Complexities

Attack Complexities

- Assume we have $2^{\beta nL}$ samples from IV_0 .
- We need samples from $2^{(1-\beta)nL}$ different IVs to find collision.
- Time:
 - Sort table $\beta nL2^{\beta nL}$
 - Search in table $\beta nL2^{(1-\beta)nL}$
- \bullet Memory: $nL2^{\beta nL}$

Results Conclusions

Results

		Attack I	Attack II
		Keystream/Compl.	Memory/IVs/Compl.
Pomaranch v1	128 bit	$2^{71} / 2^{71}$	2^{67} / 2^{63} / 2^{63}
Pomaranch v2	80 bit	$2^{56} / 2^{56}$	$2^{45} / 2^{42} / 2^{42}$
	128 bit	2^{77} / 2^{77}	2^{67} / 2^{63} / 2^{63}
Pomaranch v3	80 bit	$2^{71} / 2^{71}$	2^{58} / 2^{54} / 2^{54}
	128 bit	$2^{126} / 2^{126} *$	2^{71} / 2^{98} / 2^{104}

* Without frame length restriction.

Results Conclusions

Conclusions

- Presented the best distinguisher so far on all version and variants of Pomaranch in terms of computational complexity.
- Presented a general resynchronization attack that works for all ciphers where $|K| > |State_{K+IV}|/2$.
- First attack presented on Pomaranch Version 3.

