
Analysis of QUAD

Owen (Chia-Hsin) Chen, National Taiwan University

March 27, FSE 2007, Luxembourg

Work at Academia Sinica supervised by Dr. Bo-Yin Yang

Jointly with Drs. Dan Bernstein and Jiun-Ming Chen



QUAD(q, n, r), a Family of Stream Ciphers

State: n-tuple x = (x1, x2, . . . , xn) ∈ Kn, K = GF(q)

Update: x ← (Q1(x), Q2(x), . . . , Qn(x)). Here each Qj is a

randomly chosen, public quadratic polynomial

Output: r-tuple (P1(x), P2(x), . . . , Pr(x)) before updating

(again, each Pj is a random, public quadratic polynomial)

At Eurocrypt 2006, Berbain-Gilbert-Patarin reported speeds for

QUAD(2, 160, 160), QUAD(16, 40, 40), and QUAD(256, 20, 20).
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A graphical Depiction

x0 //

��

x1 = Q(x0) //

��

x2 = Q(x1) //

��

x3 = Q(x2) //

��

· · ·

y0 = P(x0) y1 = P(x1) y2 = P(x2) y3 = P(x3) · · ·

Typically q is a power of 2, allowing each output vector

yi ∈ GF(q)r to encrypt the next r lg q bits of plaintext in a

straightforward way.
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QUAD, �Provably Secure�?

• Security Theorem: Breaking QUAD implies the capability to solve

n + r random quadratic equations in n variables.

• GenericMQ (Multivariate Quadratics) is an NP-hard problem.

• All known algorithms to solve such a generic quadratic polynomial

system have average time complexity 2an+o(n) when r/n =
constant; most also require exponential space.
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Di�cult Generically, But . . .

Following the position paper of Koblitz-Menezes (�Another look

at Provable Security� J. of Crypto.) we would like to discuss the

implications of the security proof.

• How tight is the security reduction?

• How di�cult is the underlying problem?

• What is the best attack known today?

• Is the security reduction complete?
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Instances and Provability

We would like to proposed the following classi�cation of instances

of families of cryptosystems covered by security reductions:

Broken: We can attack and break the instance.

Unprovable: We can solve the underlying hard problem.

Unproven: A putative feasible attack on the instance need not

lead to an improvement on the solution of the underlying hard

problem due to the looseness factor in the security reduction.

Proved: Security proof works as advertised for this instance.
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Today's System-Solving

State-of-the-art algorithms to solve m generic polynomial

equations in n GF(q)-variables are all related in some way to

Buchberger's algorithm for computing Gröbner Bases.

• XL, �rst proposed by Lazard and rediscovered by Courtois et al.

Essence: an elimination on a Macaulay Matrix. Also the adjuncts

� FXL (`F' for ��x�) introduces guessing variables.

� XL2, running the elimination on the highest monomials only

and then repeatedly multiply by variables to raise degrees.

• F4 (now in MAGMA) and F5, of which XL2 is an inferior form.
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Facts of Life for XL

# monomials: T = [tD]
(
(1− tq)n(1− t)−(n+1)

)
; (1)

# free monoms: T − I ≥ [tD]

(
(1− tq)n

(1− t)n+1

m∏
i=1

(
1− tdi

1− tqdi

))
. (2)

Here deg pi := di, [u]s := coe�cient of u in expansion of s. We expect a

solution at DXL = min{D : RHS of Eq. 2 ≤ 0}. If the (pi) is q-semi-regular

(true almost always), Eq. 2 is = as long as its RHS remains positive.

T =
(
n+D

D

)
, T − I = [tD]

(
(1− t)m−n−1 (1 + t)m

)
is the reduced case for large �elds (q > D). CXL ≈ 3kT 2(c0 + c1 lg T ) using

a modi�ed Wiedemann algorithm (k is average number of terms per equation).
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XL with Homogenous Wiedemann
1. Create the extended Macaulay matrix of the system to a certain degree DXL: Multiply

each equation of degree di by all monomials up to degree DXL − di and take the matrix of coe�cients.

2. Randomly delete some rows then add some columns to form a square system, Ax = 0

where dim A = βT + (1 − β)R. Usually β = 1 works. Keep the same density of terms.

3. Apply the homogeneous version of Wiedemann's method to solve for x:
(a) Set k = 0 and g0(z) = 1, and take a random b.
(b) Choose a random uk+1 [usually the (k + 1)-st unit vector].

(c) Find the sequence uk+1A
ib starting from i = 0 and going up to 2N − 1.

(d) Apply gk as a di�erence operator to this sequence, and run the Berlekamp-Massey algorithm

over GF(q) on the result to �nd the minimal polynomial fk+1.

(e) Set gk+1 := fk+1gk and k := k + 1. If deg(gk) < N and k < n, go to (b).

4. Compute the solution x using the minpoly f(z) = gk(z) = cmzm +cm−1z
m−1 + · · ·+c`z

`:

Take another random b. Start from x = (cmAm−`+cm−1A
m−`−1+· · ·+c`1)b, continuing

to multiply by A until we �nd a solution to Ax = 0.

5. If the nullity ` > 1 repeat the check below at every point of an a�ne subspace (q points if ` = 2).

6. Obtain the solution from the last few elements of x and check its correctness.
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QUAD(256, 20, 20) Unprovable from MQ

• Is 20 GF(256) variables in 40 equations hard to solve?

• We say no! Generic XL solves this in 245 cycles, only a few hours

on a decent computer.

• The technical details are: cycles per multiplication on a P4 ≈ 12
(3 L1 cache loads); DXL = 5 and T = 53130. Max number of

terms per equation is k . 231, so CXL ≈ 9× 1012 . 245.

• Hence no security is provable [nor claimed by orig. QUAD paper]

fromMQ (20 vars, 40 eqs) over GF(256).
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Direct Attack

• Can QUAD(256, 20, 20) be a cipher that is acceptably secure

without being provable? We say no, and estimate 263 cycles for

a direct attack that breaks QUAD(256, 20, 20).

• Often we can acquire some cipher stream via known plaintext.

This attack only uses two blocks (29 bits) of output.

• Let the instance be xj+1 = Q(xj), yj = P (xj) with P,Q :
GF(q)n → GF(q)n. With (WLOG) y0 and y1, we solve for x0

via

P (x0) = y0, P (Q(x0)) = y1.
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20 quadratics, 20 quartics over GF(256)

• 263 mults upper bound, real value should be more like . 260.

• Signi�cant parameters are:

� degree DXL = 10,
� #monomials T =

(30
10

)
= 30045015,

� #initial equations is R = 20×
(28

8

)
+20×

(26
6

)
= 66766700,

� total # terms in those equations is

τ := kR = 20
(28

8

)(22
2

)
+ 20

(26
6

)(24
4

)
= 63287924700.

Should be doable on a machine or cluster with 384GB of memory.
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Testing Attack vs. QUAD(256, n, n)
n 9 10 11 12 13 14 15

D 7 7 7 8 8 8 8

CXL 2.29 · 102 7.55 · 102 2.30 · 103 5.12 · 104 1.54 · 105 4.39 · 105 1.17 · 106

lgCXL 7.84 9.56 1.12 · 10 1.56 · 10 1.72 · 10 1.87 · 10 2.02 · 10
T 1.14 · 104 1.94 · 104 3.28 · 104 1.26 · 105 2.03 · 105 3.20 · 105 4.90 · 105

aTm 120 147 177 245 288 335 385

clks 14.6 13.6 12.1 13.1 12.9 12.8 12.7

MS C++ 7; P-D 3.0GHz, 2GB DDR2-533, T: #monomials, aTm: average terms in a row, clks: number of clocks per multiplication.

• Serial Code on i386 requires three dependent L1 accesses per

multiplication (3 cycles K8/Core, 4 cycles P4) plus change.

• Unrolling loops for x86-64 saves 20%�25% cycles a multiplication.

• 256-semi-regularity assumption �ts empirical data up to n = 15.
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QUAD(16, 40, 40) Unprovable, but not Broken

• 80 eqs. in 40 GF(16) vars. estimated to < 272 cycles in XL.

• Technical data: DXL = 8, T = 377348994, and k . 861.

• So QUAD(16, 40, 40) can never be �provably secure� fromMQ
(40,80). But we don't know how to break it in 280.

• Direct solution takes . 295 mults (guesstimated at 2100 cycles)

via XL-Wiedemann (DXL = 14, T = 3245372870670).

• Data complexity is 10000 TB (only ∼ 256 bits) for the matrix.
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Why Only 2 Blocks?

• Practical answer: we test with degree-8 equations; doesn't help.

• Theoretical answer: the XL operating degree is

DXL = min

{
D : [tD]

(
(1− t2)(1− t4)

)n
(1− t)n+1 < 0

}
,

Hence w := DXL/n ≈ the smallest positive zero of fn(w) :=∮
(1− z2)n(1− z4)n

(1− z)n+1zwn+1 dz =
∮

dz

z(1− z)

(
(1 + z)(1− z4)

zw

)n
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Diminishing Returns (for large q)

In asymptotic analysis, fn(w) =
∮

dz
z(1−z)

(
(1+z)(1−z4)

zw

)n

can

only vanish if the saddle point equation of the integral, letting the

derivative of the expression between the paren be zero:

(w − 5)z4 + z3 − z2 + z − w = 0

has double roots (a �monkey saddle�), which happens when w is

very close to 0.2 (actually ≈ 0.200157957).

Similar computations including degree-8 equations only make it

w ≈ 0.1998. Clearly not worth our time.
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QUAD(2, 160, 160): An Unproven Case

• QUAD(2, 160, 160) takes≈ 2180 multiplications to attack directly:

just solve 160 equations in 160 variables using XL.

• For n < 200, the e�ect of using quartic and degree-8 equations

(2nd, 3rd output blocks and beyond) is not discernible.

• Similar asymptotics as above shows that for large n they

(eventually) make a big di�erence.

• The underlyingMQ problem of 160 vars and 320 equations takes

2140 multiplications, which seems high enough, but . . .
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Tightness of Reduction

• QUAD attack implies anMQ attack with a loss of e�ciency.

• Speci�cally, if λr bits of output from QUAD(2, n, r) can be

distinguished from uniform with advantage ε in time T , then

a random MQ system of n + r equations in n variables over

GF(2) can be solved with probability 2−3ε/λ in time

T ′ ≤ 27n2λ2

ε2

(
T + (λ + 2)TS + log

(
27nλ2

ε2

)
+ 2
)

+
27nλ2

ε2 TS,

where TS := time to run one block of QUAD(2, n, r).
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Proven and Unproved Cases for q = 2
The looseness factor is about 210n2λ3/ε3. If ε = 0.01, n = r,

and L = λn = 240, this factor is then 2150/n. The theorem

cannot conclude T ≥ 280 without assuming that T ′ ≥ 2230/n.

• n = 160 is hence Unproven (original QUAD paper states this).

• n = 256: Proven for L = 222, ε = 0.01, T ′ ≈ 2205

(multiplications). In fact we only need T ′ ≥ 2168.

• n = 350: Proven for L = 240, ε = 0.01, T ′ ≈ 2263

(multiplications). We only needed T ′ ≥ 2221.
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A Note on T 2.376

• Often T 2.376 is used as the cost of eliminations.

• This discounts the huge constant that is expected from the

Coppersmith-Winograd paper.

• We improve T 2.376 to T 2, using a sparse matrix algorithm, but

there are still factors in front of T 2.

• This explains the gap in the analysis for QUAD(2, 350, 350).
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Conclusions and TODOs

• GenericallyMQ is believed to be exponential in n. Complexity

of breaking QUAD would then also be of the form 2an+o(n). But

the coe�cient a (= a(q, r/n)) can be surprisingly small.

• QUAD is clearly a worthwhile attempt and worth optimizing further.

• We need tighter reductions. At the moment, we are reducing from

what seems to be a more di�cult problem to an easier problem.

• Comparisons between ciphers w. provably secure parameters?

• Taking into account storage access delays and parallelism?
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Why Wiedemann and not Lanczos

The two should be more or less equivalent in modern forms. We

chose Wiedemann over Lanczos because in the �naive� forms

• Because it is easier to program well. Lanczos requires multiplying

by a sparse matrix in opposite directions.

• We don't need to use a random diagonal vector.

• We just had the code ready to use.
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Why XL and not F5

• Theoretical: Working on the top degree monomials, for large �elds

XL2/F4/F5 play with one fewer variable. This may not o�set

dense vs. sparse matrix equation solving di�erence if ω > 2.

• Practical: If the matrices of F4/F5 will eventually become

moderately dense, we will run out of memory before time.
m − n DXL Dreg n = 9 n = 10 n = 11 n = 12 n = 13

0 2m m 6.090 46.770 350.530 3322.630 sigmem

1 m dm+1
2 e 1.240 8.970 53.730 413.780 2538.870

2 dm+1
2 e dm+2−

√
m+2

2 e 0.320 2.230 12.450 88.180 436.600

Test results given on P4-3.2G, 2GB RAM, MAGMA-2.12 with F4.

• Pragmatic: we don't have a copy of F5 to play with.
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Basic XL at Degree D

Let T (D) :={deg ≤ D monomials}, T := |T (D)|.

• eXtend: �rst multiply each pi of degree di by every monomial

xb := xb1
1 · · ·xbn

n ∈ T (D−di) to get equations R(D).

• Linearize: then reduce R(D) as a linear system in all the

xb ∈ T (D). We may be able to solve the system or to reduce

down to a univariate equation (say in x1).

R := |R(D)| and I counts resp. equations and independent

equations among R(D).
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Toy XL example over GF(7)

p1 : x2+ 4y2+ z2+ 5xy+ 2xz+ 6yz+ 5x+ 3y+ 5z+ 1 = 0
p2 : 3x2+ 2y2+ 3z2+ 4xy+ 6xz+ 2yz+ 6x+ 4y+ 3z+ 2 = 0
p3 : 2x2+ 3y2+ 2z2+ 5xy+ 2yz+ 4x+ y+ z+ 4 = 0
p4 : 6x2+ 3y2+ 3z2+ 5xz+ yz+ 5y+ 2z+ 2 = 0

Here n = 3, m = 4, we will use D = 3, and multiply every

equation by 1, x, y, z to get
((4

3

))
= 20 monomials (including 1)

and 4× 4 = 16 equations.
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The Extended Macaulay Matrix

x2y x2z y2x xyz z2x y2z z2y xy xz yz x3 x2 x y3 y2 y z3 z2 z 1

0 0 0 0 0 0 0 5 2 6 0 1 5 0 4 3 0 1 5 1
0 0 0 0 0 0 0 4 6 2 0 3 6 0 2 4 0 3 3 2
0 0 0 0 0 0 0 5 0 2 0 2 4 0 3 1 0 2 1 4
0 0 0 0 0 0 0 0 5 1 0 6 0 0 3 5 0 3 2 2
5 2 4 6 1 0 0 3 5 0 1 5 1 0 0 0 0 0 0 0
1 0 5 2 0 6 1 5 0 5 0 0 0 4 3 1 0 0 0 0
0 1 0 5 2 4 6 0 5 3 0 0 0 0 0 0 1 5 1 0
4 6 2 2 3 0 0 4 3 0 3 6 2 0 0 0 0 0 0 0
3 0 4 6 0 2 3 6 0 3 0 0 0 2 4 2 0 0 0 0
0 3 0 4 6 2 2 0 6 4 0 0 0 0 0 0 3 3 2 0
5 0 3 2 2 0 0 1 1 0 2 4 4 0 0 0 0 0 0 0
2 0 5 0 0 2 2 4 0 1 0 0 0 3 1 4 0 0 0 0
0 2 0 5 0 3 2 0 4 1 0 0 0 0 0 0 2 1 4 0
0 5 3 1 3 0 0 5 2 0 6 0 2 0 0 0 0 0 0 0
6 0 0 5 0 1 3 0 0 2 0 0 0 3 5 2 0 0 0 0
0 6 0 0 5 3 1 0 0 5 0 0 0 0 0 0 3 2 2 0
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The Result of Elimination

x2y x2z y2x xyz z2x y2z z2y xy xz yz x3 x2 x y3 y2 y z3 z2 z 1

5 2 4 6 1 0 0 3 5 0 1 5 1 0 0 0 0 0 0 0
0 1 0 5 4 6 1 3 6 5 4 6 4 4 3 1 0 0 0 0
0 0 3 6 0 3 4 1 2 6 0 5 6 2 5 4 0 0 0 0
0 0 0 1 0 2 3 4 5 3 0 2 1 2 4 2 0 0 0 0
0 0 0 0 5 5 5 4 6 5 3 1 3 3 4 6 1 5 1 0
0 0 0 0 0 5 3 2 4 0 0 1 4 1 2 1 0 2 6 0
0 0 0 0 0 0 6 4 2 0 5 1 5 6 5 6 1 0 0 0
0 0 0 0 0 0 0 5 0 2 0 2 4 0 3 1 0 2 1 4
0 0 0 0 0 0 0 0 5 1 0 6 0 0 3 5 0 3 2 2
0 0 0 0 0 0 0 0 0 2 0 4 0 0 3 0 0 2 4 2
0 0 0 0 0 0 0 0 0 0 6 0 6 3 1 0 4 1 6 1
0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 0 0 4 3 1
0 0 0 0 0 0 0 0 0 0 0 0 3 1 2 4 2 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 4 6 0 0 1 5
0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 3 6 1 5 5
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 2 1 6
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Operative Condition and Cost of XL

• XL solves a system if T − I ≤ min(D, q − 1).

• Other situations where XL also succeeds are called �pathological

terminations�. [Our example above is one.]

• Let E(N,M) := the time complexity of elimination on N

variables and M equations, then XL takes time Cxl ≈ E(T,R).

• Asymptotically lg E(T,R) ∼ ω lg T , where ω is �the order of

matrix multiplication�. An often-cited number is 2.376.

28


