FSE 2007 in Luxembourg, 2007/Mar./26~28

Related-Key Rectangle Attacks on Reduced AES-192 and AES-256

Jointly worked with Seokhie Hong and Bart Preneel, **Speaker: Jongsung Kim**

Korea University K.U. Leuven

- Motivations of this work
- Description of the related-key rectangle attack
- Related-key rectangle attacks on 10-round AES-192
- Other cryptanalytic results on reduced AES-192 and AES-256
- Comparison of previous attacks and our attacks on AES

- Motivations of this work
- Description of the related-key rectangle attack
- Related-key rectangle attacks on 10-round AES-192
- Other cryptanalytic results on reduced AES-192 and AES-256
- Comparison of previous attacks and our attacks on AES

Motivations of this work (1)

- One of the important issues on block ciphers is to evaluate the security of the Advanced Encryption Standard (AES).
- The main motivation of this work is on the previous best known attack on AES-192 (related-key rectangle attack on 9-round AES-192).
 - it starts from round 2.
 - it is based on two consecutive related-key truncated differentials; the second one holds with probability one.
 - our work starts from the question: "what if the related-key rectangle attack is applied from round 0 and uses two consecutive related-key truncated differentials with probabilities less than one?"

Motivations of this work (2)

- If we apply the related-key rectangle attack to AES-192 from round 0 and use two consecutive relatedkey truncated differentials with probabilities less than one, then we would be able to obtain 10-round AES-192 attack.
 - the first differential: rounds 1~4 (4 rounds)
 - the second differential: rounds 5~8 (4 rounds)
- Comparison) Previous 9-round AES-192 attack:
 - the first differential: rounds 4~6 (3 rounds)
 - the second differential: rounds 7~9 (3 rounds)

- Motivations of this work
- Description of the related-key rectangle attack
- Related-key rectangle attacks on 10-round AES-192
- Other cryptanalytic results on reduced AES-192 and AES-256
- Comparison of previous attacks and our attacks on AES

From Differential Attack to Related-Key Rectangle Attack

FSE 2007

Related-Key Rectangle Attack

- This attack has been introduced in ACISP'04 and Eurocrypt'05.
- In this attack there exist several related-key rectangle distinguishers:
 - 2 related-key based distinguisher
 - 4 related-key based distinguisher
 - related-key structure based distinguisher

Related-Key Rectangle Distinguisher (1)

. For the E cipher :

 $\Pr[D|\alpha,\Delta k,\Delta k'] = ?$

Related-Key Rectangle Distinguisher (2) P_{γ} P_4 $P_1 \alpha$ $P_{3} \alpha$ $E_{0}^{k'^{*}}$ E_0^k $p(\alpha, \beta, \Delta k)$ $p(\alpha, \beta, \Delta k)$ γ E_0^k $E_0^{k'}$ В 2^{-n} γ $|E_1^{k'^*}|$ E_1^{k} $q(\gamma, D, \Delta k')$ $E_1^{k'}$ E_1^k $\delta \in D$ $q(\gamma, D, \Delta k')$ C_2 C_{A} $\delta \in D$ C_3 C_1 **Check**

CIST and **COSIC**

FSE 2007

Related-Key Rectangle Distinguisher (3)

• For the *E* cipher:

Pr[$D \mid \alpha, \Delta k, \Delta k'$] = $2^{-n} \cdot \sum_{\beta, \gamma} p^2(\alpha, \beta, \Delta k) \cdot q^2(\gamma, D, \Delta k') = 2^{-n} \cdot \hat{p}^2 \cdot \hat{q}^2$, where $\hat{p} = \sqrt{\sum_{\beta} p^2(\alpha, \beta, \Delta k)}, \ \hat{q} = \sqrt{\sum_{\gamma} q^2(\gamma, D, \Delta k')}$

- For a random cipher: $\Pr[D | \alpha, \Delta k, \Delta k'] = 2^{-2n} \cdot |D|^2$
- If $2^{-n} \cdot \hat{p}^2 \cdot \hat{q}^2 \ge 2^{-2n} \cdot |D|^2$, then the related-key rectangle distinguisher works.

- Motivations of this work
- Description of the related-key rectangle attack
- Related-key rectangle attacks on 10-round AES-192
- Other cryptanalytic results on reduced AES-192 and AES-256
- Comparison of previous attacks and our attacks on AES

Description of AES-192

- AES-192 is a 128-bit block cipher with a 192-bit key and 12 rounds.
- One round of AES-192 is composed of
 - a nonlinear layer SubBytes (SB)
 - three linear layers ShiftRows (SR), MixColumns (MC) and AddRoundKey (ARK)
- Before the first round, an extra ARK step is applied, called a whitening key step, and MC is omitted in the last round.

Key Schedule of AES-192

FSE 2007

Strategy of Our Attacks on 10-Round AES-192

- Treat 10-round AES-192 as a cascade of four sub-ciphers E^b , E^0 , E^1 , E^1 .
 - E^b: round 0 including the whitening key addition step and excluding the key addition step of round 0
 - E^0 : rounds 1-4 including the key addition step of round 0
 - = E_1^1 : rounds 5-8
 - *E*^{*f*}: round 9
- Construct related-key truncated differentials on E^0 and E^1 to obtain a 8-round related-key rectangle distinguisher for $E^1 \circ E^0$.
- Recover 112 bits of the keys in E^b and E^f by checking that plaintext quartets satisfy our rectangle distinguisher.

Slow Difference Propagation of the Key Schedule of AES-192

- We can use 256 related keys to make 3-round key differences $\Delta K_0 ||\Delta K_1||\Delta K_2$ and $\Delta K'_5 ||\Delta K'_6||\Delta K'_7$ satisfying $HW_b(\Delta K_0) = HW_b(\Delta K'_5) = 2, HW_b(\Delta K_1) = HW_b(\Delta K'_6) = 0$ and $HW_b(\Delta K_2) = HW_b(\Delta K'_7) = 1$
- It allows to construct two consecutive 4-round related-key differentials with high probabilities.

The First Related-Key Differential and the Preceding differential

Assumption 1. The key quartet (K, K^*, K', K'^*) is related as follows;

 $K \oplus K^* = K' \oplus K'^* = \Delta K, \ K \oplus K' = K^* \oplus K'^* = \Delta K' \ .$

Assumption 2. A plaintext quartet (P, P^*, P', P'^*) is related as follows;

 $P \oplus P^*, P' \oplus P'^* \in \Delta P$.

Assumption 3. $E^b_K(P) \oplus E^b_{K^*}(P^*) = E^b_{K'}(P') \oplus E^b_{K'^*}(P'^*) = \Delta K_0$.

FSE 2007

The Second Related-Key Differential and the following differential

 $\hat{q}^2 = \Pr[I_6 \oplus I'_6 = I_6^* \oplus I'_6^*] = (2^{-64} \cdot 2^{-64}) \cdot 2^{64} = 2^{-64}$

- Difference b goes to difference a through S-box in the third column of the fourth round.
- For AES-192, the rectangle probability is $\hat{p}^2 \cdot \hat{q}^2 \cdot 2^{-128} = 2^{-231}$.
- For a random cipher, the rectangle probability is $(2^{-128} \cdot 127)^2 = 2^{-242}$.

Complexity of Our 10-round AES-192 Attack

- Number of required related keys = 256
- Data complexity = 2¹²⁵ related-key chosen plaintexts
- Time complexity = 2¹⁸² encryptions
- Success rate = 0.99
- We can reduce the number of required related keys from 256 to 64 with almost the same attack complexity.

- Motivations of this work
- Description of the related-key rectangle attack
- Related-key rectangle attacks on 10-round AES-192
- Other cryptanalytic results on reduced AES-192 and AES-256
- Comparison of previous attacks and our attacks on AES

Other Cryptanalytic Results

- Using two related keys we can attack 8-round AES-192 and using four related keys we can attack 9-round AES-256.
- We point out some flaw in the previous 9-round AES-192 attack, show how to fix it and enhance the attack in terms of the number of related keys.

Conclusion

Block Cipher	Type of Attack	Number of Rounds	Number of keys	Complexity Data / Time
AES-128 (10 rounds)	Imp. Diff.	5 6	1 1	$2^{2^{0.5}CP} / 2^{31}[4]$ $2^{01.5}CP / 2^{122}[11]$
	Boomerang	6	1	2 ⁷¹ ACPC / 2 ⁷¹ [9]
	Partial Sums	6 7	1 1	$6 \cdot 2^{32} CP / 2^{44} [14]$ $2^{128} - 2^{119} CP / 2^{120} [14]$
AES-192	Imp. Diff.	7	1	2 ⁹² CP / 2 ¹⁸⁶ [31]
(12 rounds)	Square	7	1	2 ³² CP / 2 ¹⁸⁴ [29]
	Partial Sums	7 7 8	1 1 1	$19 \cdot 2^{32}$ CP / 2^{155} [14] $2^{128} - 2^{119}$ CP / 2^{120} [14] $2^{128} - 2^{119}$ CP / 2^{188} [14]
	RK Imp. Diff.	7 7	2 32	2 ¹¹¹ RK-CP / 2 ¹¹⁶ [17] 2 ⁵⁶ CP / 2 ⁹⁴ [8]
		8	2	2^{88} RK-CP / 2^{183} [17]
		8	32	$2^{116}CP / 2^{134}$ [8]
		8 8	32 32	2^{92} CP / 2^{159} [8] $2^{68.5}$ CP / 2^{184} [8]
	RK Rectangle	8	4	2 ^{86.5} RK-CP / 2 ^{86.5} [16]
		8	2	2^{94} RK-CP / 2^{120} (New)
		9†	256	2 ⁸⁶ RK-CP / 2 ¹²⁵ [6]
		9‡	64	2 ⁸⁵ RK-CP / 2 ¹⁸² (New)
		10 10	256 64	2^{126} RK-CP / 2^{162} (New) 2^{124} RK-CP / 2^{183} (New)
A FRG. OF G	D 1110			a ¹²⁸ a ¹¹⁹ cp (a ²⁰⁴ ft t)
(14 rounds)	Partial Sums	8 9	1 256	$2^{85}CP / 5 \cdot 2^{224}$ [14] $2^{85}CP / 5 \cdot 2^{224}$ [14]
	RK Rectangle	9	4	2^{99} RK-CP / 2^{120} (New)
		10	256	2 ^{114.9} RK-CP / 2 ^{171.8} [6]
		10	64	2 ^{113.9} RK-CP / 2 ^{172.8} (New)

Thank you for your attention

Brief Discripton of Our 10round AES-192 Attack

- Encrypt lots of chosen plaintexts such that about 32 plaintext quartets are expected to satisfy our rectangle distinguisher.
- Filter out all the obtained ciphertext quartets that do not satisfy our desired differences, $\Delta I'_{10}$.
- Guess some portions of the key in \tilde{E}^{b} , E^{f} .
- With the guessed key, partially encrypt plaintext quartets and partially decrypt corresponding ciphertext quartets to check if the quartets follow our rectangle distinguisher.
- Output a guessed key such that at least 16 quartets follow our rectangle distinguisher.

Notation

- $K_w, K_w^*, K_w', K_w'^*$: whitening keys generated from master keys K, K^*, K', K'^* , respectively.
- $K_i, K_i^*, K_i', K_i'^*:$ subkeys of round i generated from $K, K^*, K', K'^*,$ respectively.
- $-P, P^*, P', P'^*$: plaintexts encrypted under K, K^*, K', K'^* , respectively.
- $I_i, I_i^*, I_i', I_i'^*$: input values to round *i* caused by plaintexts P, P^*, P', P'^* under K, K^*, K', K'^* , respectively.
- -a: a fixed nonzero byte value.
- -b,c: output differences of S-box for the fixed nonzero input difference a.
- *: a variable and unknown byte.

$$\Delta K_{i} = K_{i} \oplus K_{i}^{*} = K'_{i} \oplus K'_{i}^{*}$$
$$\Delta K'_{i} = K_{i} \oplus K'_{i} = K_{i}^{*} \oplus K'_{i}^{*}$$
$$\Delta I_{i} = I_{i} \oplus I_{i}^{*} = I'_{i} \oplus I'_{i}^{*}$$
$$\Delta I'_{i} = I_{i} \oplus I'_{i} = I_{i}^{*} \oplus I'_{i}^{*}$$